期刊文献+

基于大规模分布式副本定位的分级索引压缩机制 被引量:2

Novel Hierarchical Index Compression Mechanism Based on Large Scale Distributed Replica Location
下载PDF
导出
摘要 针对超级节点索引方式下的大规模分布式系统,提出一种用于副本定位的资源索引分级压缩机制。该机制把超级节点所辖分级网络中上层节点的有序子节点集映射到一个位串向量,进而通过自下而上的索引发布和索引在上级节点的汇聚实现冗余副本记录数的压缩,副本定位则通过逆向的位串查询实现。实验表明,该机制可达到较高的记录压缩比,并在一定程度上提高副本定位效率。 Aiming at super-node indexed large scale distributed system(LSDS),a kind of novel hierarchical index compression mechanism is put forward for replica location.It is implemented by mapping all sub nodes of higher-up node to corresponding bit string at first,then compressing record number of redundant replica index by bottom-up index publish and index aggregating on higher-up node.Accordingly,replicas in system can be located by query on bit string conversely.The experimental results indicate that this mechanism achieves high record compression ratio and has some active impacts on efficiency of replica location in LSDS.
出处 《电子科技大学学报》 EI CAS CSCD 北大核心 2011年第4期554-558,共5页 Journal of University of Electronic Science and Technology of China
基金 四川省应用基础研究项目(2008JY0070-2)
关键词 汇聚 分级压缩 大规模分布式系统 发布 副本定位 aggregating hierarchical compression large scale distributed system publish replica
  • 相关文献

参考文献13

  • 1SAROIU S, GUMMADI K P, GRIBBLE S D. Measuring and analyzing the characteristics of Napster and Gnutella hosts[J]. Multimedia Systems, 2003, 9(2): 170-184.
  • 2RIPEANU M, FOSTRE I, LAMNITCHI A. Mapping the gnutella network: properties of large-scale peer-to-peer systems and implications for system design[J]. Distributed, Parallel, and Cluster Computing, 2002, 6(1): 1-12.
  • 3冯劲潇,陈贵海,谢俊元.分级有序P2P超级节点拓扑构造[J].计算机科学,2009,36(10):127-131. 被引量:1
  • 4蒋海,李军,李忠诚.混合内容分发网络及其性能分析模型[J].计算机学报,2009,32(3):473-482. 被引量:22
  • 54 CHERVENAK A L, CAI M. Applying peer-to-peer techniques to grid replica location services[J]. Journal of Grid Computing. 2006, 4(1): 49-69.
  • 6CHERVENAK A, SCHULER R, RIPEANU M, et a l. The globus replica location service: design and experience[J]. IEEE Transactions on Parallel and Distributed Systems, 2009, 20(9): 1260-1272.
  • 7BRODER A, MITZENMACHER M. Network Applications of Bloom Filters: A Survey[J]. Intemet Mathematics, 2004, 1(4): 485-509.
  • 8陈刚,冯柯,何清法,等.数据库压缩及解压缩方法.中国,39A40840D,200410088783[P].2007-10-17.
  • 9祝君,林庆农,徐造林.实时历史数据库中压缩技术的并行化研究[J].计算机技术与发展,2010,20(7):36-39. 被引量:4
  • 10骆吉洲,李建中.一种有效的关系数据库压缩方法[J].软件学报,2005,16(2):205-214. 被引量:7

二级参考文献67

  • 1拓广忠,慕群.实时数据库原理及其压缩技术分析[J].华北电力技术,2004(6):17-20. 被引量:13
  • 2夏启志,谢高岗,闵应骅,李忠诚.IS-P2P:一种基于索引的结构化P2P网络模型[J].计算机学报,2006,29(4):602-610. 被引量:39
  • 3Pallis G, Vakali A. Insight and perspectives for content delivery networks. Communications of the ACM, 2006, 49 (1) : 101-106.
  • 4Li Jin. On peer-to-peer (P2P) content delivery. Peer-to-Peer Networking and Applications, 2008, 1(1) : 45-63.
  • 5Gadde S, Chase J, Rabinovich M. Web caching and content distribution: A view from the interior. Computer Communications, 2001, 24(2).. 222-231.
  • 6Tim Wauters, Jan Coppens et al. Replica placement in ring based content delivery networks. Computer Communications, 2006, 29(16).. 3313-3326.
  • 7Shaikh A, Tewari R et al. On the effectiveness of DNS-based server selection//Proceedings of the IEEE INFOCOMM. Anchorage, AK, USA, 2001:1801-1810.
  • 8Fei Zong-Ming, Yang Meng-Kun. A segment-based finegrained peer sharing technique for delivering large media files in content distributed networks. IEEE Transactions on Multimedia, 2006, 8(4): 824-829.
  • 9Cahill Adrian J, Sreenan Cormae J. An efficient CDN placement algorithm for high-quality TV content//Proceedings of the 9th IASTED International Conference on Internet and Multimedia Systems and Applications (EurolMSA). Switzerland, 2005:364-369.
  • 10Day M, Cain B, Tomlinson Get al. A model for content internetworking (CDI). IETF RFC3466, 2003.

共引文献30

同被引文献21

  • 1田宝凤,徐抒岩,孙荣春,王昕,闫得杰.一种适合星上应用的遥感图像有损压缩算法[J].光学精密工程,2006,14(4):725-730. 被引量:16
  • 2Singhal M. Issues and approaches to design of real-time database systems [ J]. ACM SIGMOD Rec.,1988,17( I) :19-33.
  • 3Cappellini V. A study on data-compression techniques[ C]./ European Space Research Organisation, [s. I.]. [ s. n.] , 1974.
  • 4Nelson M,Gailly Jean - Loup. The data compression book [M]. 2nd ed. New York:MIS Press,1995.
  • 5Iyer B R, Wilhite D. Data compression support in databases [C]./Proceedings of the 20th International Conference on Very Large Data Bases. [ s. I.]. [ s. n.] ,1994 :695 -704.
  • 6Salomon D. Data compression: the complete reference [ M]. New York:Springer-Verlag New York,Inc. ,1997.
  • 7Roth M A, van Horn S J. Database compression [ J]. ACM SIGMOD Rec. ,1993,22(3) :31-39.
  • 8Ehrman L. Analysis of some redundancy removal bandwidth compression techniques [ J]. Proceedings of the IEEE ,1967, 55(3):278-287.
  • 9Hale J C,Sellars H L. Historical data recording for process computers[J]. CEP, 1981,77(11) :38-43.
  • 10Bristol E H. Swinging door trending:adaptive trend recording [C]./ISA National Conf. Proc. . [ s. I.]. [ s. n.].1990:749 -754.

引证文献2

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部