期刊文献+

不确定系统响应上下界分析的改进仿射算法 被引量:3

Uncertain System Response Bounds Analysis with Modified Affine Arithmetic
下载PDF
导出
摘要 针对仿射运算时新符号噪声的引入必然造成误差放大的不足,在函数上下界计算中引入了矩阵形式的上下界的仿射计算公式,提出了一种计算上下界的改进仿射算法。该算法在仿射变量进行乘法运算时不会引入新的噪声,相对与传统的仿射算法能得到更紧凑的界限;并通过实例计算演示了该公式的计算过程及计算方法的有效性。将有界不确定性变量的仿射型及改进的仿射运算引入不确定系统响应上下界的计算。仿真结果表明,相对于区间算法及传统的仿射算法,该算法得到解的界限更为紧凑。 The introduction of new noise symbols causes error amplification in affine arithmetic inevitably.To avoid this disadvantage,this paper presents a modified affine arithmetic in matrix form for bounds computation of functions.The modified affine arithmetic does not introduce new noises during multiplication operation of affine variables,and it can obtain compacter bounds compared with conventional affine arithmetic.The formulas computing processes and the validity of proposed method are demonstrated by an example.The affine form of bounded uncertain variables and modified affine arithmetic are used to calculate response bounds of uncertain system.The simulations show that,the proposed approach can obtain closer response bounds than interval arithmetic and conventional affine arithmetic.
出处 《电子科技大学学报》 EI CAS CSCD 北大核心 2011年第4期634-640,共7页 Journal of University of Electronic Science and Technology of China
基金 国家863计划(2006AA04Z402)
关键词 仿射型 区间算法 改进的仿射算法 不确定系统 affine form interval arithmetic modified affine arithmetic uncertain system
  • 相关文献

参考文献13

  • 1STOLFI J, HENRIQUE L F. Self-validated numerical methods and applications[M]. [S.i.]: Monograph for 21st Brazilian Mathematics Colloquium, 1999.
  • 2Ralph MARTIN,Irina VOICULESCU,Adrian BOWYER.Affine arithmetic in matrix form for polynomial evaluation and algebraic curve drawing[J].Progress in Natural Science:Materials International,2002,12(1):79-82. 被引量:8
  • 3HENRIQUE DE FIGUEIREDO L, STOLFI J. Affine arithmetic: concepts and applications[J]. Numerical Algorithms, 2004, 37: 147-158.
  • 4GRIMM C, HEUPKE W, WALDSCHMIDT K. Analysis of mixed-signal systems with affine arithmetic[J]. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 2005, 24(1): 118-123.
  • 5FEMIA N, SPAGNUOLO G True worst-case circuit tolerance analysis using genetic algorithms and affine arithmetic[J]. IEEE Transactions on Circuits and Systems, 2000, 47(9): 1285-1296.
  • 6谢永强,陈建军.不确定系统稳定性的仿射不等式分析[J].高技术通讯,2009,19(8):867-871. 被引量:3
  • 7GOLDENSTEIN K S, VOGLER C, METAXAS D. Statistical cue integration in DAG deformable models[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2003, 25(7): 801-813.
  • 8MARTIN tL SHOU Hua-hao, VOICULESCU I, et al. Comparison of interval methods for plotting algebraic curves[J]. Computer Aided Geometric Design, 2002, 19: 553-587.
  • 9SHOU Hua-hao, L1N Hong-wei, MARTIN R, et al. Modified affine arithmetic is more accurate than centered interval arithmetic or affine arithmetic[M]. Berlin: [s.n.], 2003: 355-365.
  • 10邱志平,顾笑冬,李登峰.单自由度不确定滞回系统振动响应的区间分析方法[J].动力学与控制学报,2007,5(2):173-177. 被引量:1

二级参考文献38

共引文献36

同被引文献17

引证文献3

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部