期刊文献+

多目标进化算法搜索鲁棒最优解效率研究

Research on efficiency of multi-objective evolutionary algorithms in searching robust optimal solutions
下载PDF
导出
摘要 鲁棒最优解是进化计算研究的重要方面,同时也是研究难点。多目标进化算法搜索鲁棒最优解时,通常要用蒙特卡罗积分(MCI)近似估计有效目标函数(EOF),而已有求解方法近似精度不高,使得算法搜索鲁棒最优解的性能较差。提出用拟蒙特卡罗方法(Q-MC)来估计有效目标函数方法,其所引入的Q-MC方法——Korobov点阵能更精确地估计EOF。实验结果表明,与现有的原始蒙特卡罗方法(C-MC)相比,拟蒙特卡罗方法(Q-MC)可以较大地提高多目标进化算法搜索鲁棒最优解的效率。 Robust optimal solution is of great significance in engineering application.It is one of the most important and difficult topics in evolutionary computation.Monte Carlo Integral(MCI) is generally used to approximate Effective Objective Function(EOF) in searching robust optimal solution with Multi-Objective Evolutionary Algorithm(MOEA).However,due to the low degree of accuracy in existing MCI method,the performance of searching robust optimal solution with MOEA is unsatisfactory.Therefore,the Quasi-Monte Carlo(Q-MC) method is proposed which is used to estimate EOF.Through lots of numerical experimentations,the results demonstrate that the proposed Q-MC methods-Korobov Lattice can approximate EOF more precisely when compared with the existing crude Monte Carlo(C-MC) method,and consequently the efficiency of searching robust optimal solution with MOEA has been improved at a substantial level.
出处 《计算机工程与应用》 CSCD 北大核心 2011年第23期29-33,70,共6页 Computer Engineering and Applications
基金 国家自然科学基金No.60773047 湖南省自然科学基金(No.09JJ6089) 湖南省教育厅科研项目(No.06A074)~~
关键词 进化算法 鲁棒最优解 拟蒙特卡罗方法 有效目标函数 蒙特卡罗积分 evolutionary algorithm robust optimal solutions Quasi-Monte Carlo method effective objective function Monte Carlo integral
  • 相关文献

参考文献4

二级参考文献60

  • 1Schaffer J D. Multiple Objective Optimization with Vector Evaluated Genetic Algorithms// Proc of the 1 st International Conference on Genetic Algorithm. Hillsdale, USA, 1985 : 93 - 100
  • 2Coello C C A. Evolutionary Multiobjective Optimization: A Historical View of the Field. IEEE Computational Intelligence Magazine, 2006, 1(1): 28-36
  • 3Coello C C A. 20 Years of Evolutionary Multi-Objective Optimization: What Has Been Done and What Remains to Be Done//Yen G Y, Fogel D B, eds. Computational Intelligence: Principles and Practice, Chapter 4. New York, USA : IEEE Computational Intelligence Society, 2006:73 -88
  • 4Fouseca C M, Fleming J. Genetic Algorithms for Multiobjective Optimization: Formulation, Discussion and Generalization // Proc of the 5th International Conference on Genetic Algorithms. San Mateo, USA, 1993 : 416 -423
  • 5Srinivas N, Deb K. Muhiobjective Optimization Using Nondominated Sorting in Genetic Algorithms. Evolutionary Computation. 1994, 2(3) : 221 -248
  • 6Horn J, Nafpliotis N, Goldberg D E. A Niched Pareto Genetic Algorithm for Multiobjective Optimization//Proc of the 1 st IEEE World Congress on Evolutionary Computational Intelligence. Piscataway, USA, 1994:82-87
  • 7Zitzler E, Thiele L. Multiobjective Optimization Using Evolutionary Algorithms--A Comparative Study // Proc of the 5th International Conference on Parallel Problem Solving from Nature. Amsterdam, Netherlands, 1998 : 292 -304
  • 8Zitzler E, Thiele L. Multiobjective Evolutionary Algorithms: A Comparative Case Study and the Strength Pareto Approach. IEEE Trans on Evolutionary Computation, 1999, 3 (4) : 257 - 271
  • 9Zitzler E, Laumanns M, Thiele L. SPEA2: Improving the Strength Pareto Evolutionary Algorithm. Technical Report, 103, Zurich, Switzerland: ETH Zurich. Computer Engineering and Networks Laboratory (TIK), 2001
  • 10Knowles J, Come D. Properties of an Adaptive Arehiving Algorithm for Storing Nondominated Vectors. IEEE Trans on Evolutionary Computation, 2003, 7 (2) : 100 - 116

共引文献17

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部