期刊文献+

一种新的混合粒子群方法 被引量:1

New hybrid particle swarm optimization
下载PDF
导出
摘要 利用混沌搜索和变异机制克服种群易停滞且易陷入局部最优点的不足。当种群出现停滞时先用混沌搜索更优点,当搜索到的点不满足变异精度要求时再进行变异。发现混沌搜索能使种群在出现停滞时持续寻优,而变异机制则能够有效地帮助种群在陷入局部最优点时跳出该点。结果表明该方法的全局寻优能力较强。 By introducing chaotic search and mutation mechanism,population can overcome the shortcomings of stagnation and trapping into local optimums.When the population is stagnation,chaotic search is used to find a better point firstly.If this point does not meet the precision of mutation,then mutation mechanism will make effort.Chaotic search can continuously optimize when the population is stagnation,mutation mechanism helps the population break away from local optimum when it has trapped into the local optimum.Experimental results show that the new algorithm is relatively obvious for the ability of global optimization.
出处 《计算机工程与应用》 CSCD 北大核心 2011年第23期45-47,50,共4页 Computer Engineering and Applications
关键词 混沌 变异 粒子群优化 变异机制 chaos mutation particle swarm optimization mutation mechanism
  • 相关文献

参考文献9

二级参考文献59

共引文献845

同被引文献6

  • 1Shi Y,Eberhart R C.Empirical study of particle swarm optimization[].Proceed ings of the Congress on Evolutionary Computation.1999
  • 2Shelokar P S,Siarry P,Jayaraman V K,et al.Particle swarm and ant colony algorithms hybridized for im-proved continuous optimization[].Journal of Applied Mathematics.2007
  • 3Luo Q,Yi D Y.A co-evolving framework for robust particle swarm optimization[].Journal of Applied Mathematics.2008
  • 4CHATTERJEE A,SIARRY P.Nonlinear inertia weight variation fordynamic adaptation in particle swarm optimization[].Computers and Operations Research.2007
  • 5池元成,方杰,魏鑫,蔡国飙.基于小生境和交叉选择算子的改进粒子群优化算法[J].系统仿真学报,2010,22(1):111-114. 被引量:16
  • 6汪永生,李均利.质心粒子群优化算法[J].计算机工程与应用,2011,47(3):34-37. 被引量:14

引证文献1

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部