摘要
为提高粒子群算法的优化性能,提出了一种基于相位编码的量子粒子群算法。用量子比特的相位描述粒子的空间位置,用Pauli-Z门实现粒子位置的变异。通过研究惯性因子、自身因子和全局因子的关系,提出了全局因子的自适应确定方法。以典型函数的极值优化和样本聚类问题为例的实验结果表明,该方法明显优于普通粒子群算法。
To improve the performance of particle swarm optimization,an adaptive quantum particle swarm optimization algorithm is proposed.In proposed algorithm,the position of particles is described by the phase of quantum bits,and the position mutation of particles is achieved by Pauli-Z gates.By studying the relationship among inertia factors,self-factors and globalfactors,an adaptive determination of the global-factors is proposed.Taking function extremum optimizing and samples clustering for example,the experimental results show that the proposed algorithm is obviously superior to the standard particle swarm optimization.
出处
《计算机工程与应用》
CSCD
北大核心
2011年第23期57-60,共4页
Computer Engineering and Applications
基金
国家自然科学基金No.60773065
中国博士后科学基金(No.20090460864)
黑龙江省博士后科学基金(No.LBH-Z09289)
黑龙江省教育厅科学基金(No.11551015)~~
关键词
粒子群优化
相位编码
自适应调整
优化算法
particle swarm optimization
phase encoding
adaptive adjustment
optimization algorithm