期刊文献+

具有用户特征约束的多关系聚类

Multi-relational clustering with user features constraint
下载PDF
导出
摘要 多数聚类算法都是针对数据本身,往往忽略了用户聚类目的以及聚类过程中用户的参与指导,这样从数据本身出发的聚类结果准确性往往不太理想。针对这个问题,提出具有用户特征约束的多关系聚类算法。在多关系关联数据中进行用户参与的特征选择,用Must特征集和Can’t特征集描述用户聚类目的,通过领域本体进行特征集合扩充,得到聚类特征集合进行聚类。实验表明,该算法能较好地描述用户聚类目的,实现用户参与的聚类指导,获得了较好的聚类结果。 A lot of clustering algorithms focus on data itself.The clustering aims of users and participation,guidance of users in clustering process are neglected.It leads to inaccurate result of clustering.To solve the problem,User-Constraint Multi-Relational Clustering(UCMR-Clustering) algorithm is proposed in this paper.Features selection is guided by the user in multi-relation association data.Must-feature set and Can’t-feature set are used to describe clustering aim of the user.Features sets are expanded through domain ontology and clustering features set if acquired to cluster.The result of the experiment shows that aim of user clustering can be well described in the algorithm with user’s participation and guidance.Moreover,a good result of clustering can be obtained.
作者 王志超 张磊
出处 《计算机工程与应用》 CSCD 北大核心 2011年第23期124-129,136,共7页 Computer Engineering and Applications
基金 江苏省博士后基金(No.0802023C) 中国矿业大学青年基金(No.2009A040)
关键词 聚类 用户指导 本体 多关系 cluster use-guidance ontology multi-relational
  • 相关文献

参考文献10

  • 1Du Jun,Ling C X.Asking generalized queries to domain ex-perts to improve learning. IEEE ICDM . 2009
  • 2Wagstaff K,Cardie C,Rogers S,et al.Constrained K-means Clustering with Background Knowledge. Proceedings of the Eighteenth International Conference on Machine Learning . 2001
  • 3刘应东.有约束的半监督聚类方法[J].计算机工程与应用,2009,45(22):100-102. 被引量:2
  • 4Wagstaff K,Cardie C,Rogers S,et al.Constrained K-means Clustering with Background Knowledge. Proceedings of the Eighteenth International Conference on Machine Learning . 2001
  • 5Garruzzo S,Rosaci D.Agent clustering based on semantic negoti-ation. ACM Transactions on Autonomous and Adaptive Sys-tems . 2008
  • 6陈杰,蒋祖华.领域本体的概念相似度计算[J].计算机工程与应用,2006,42(33):163-166. 被引量:34
  • 7Safarkhani B,Mohsenzadeh M.Deriving semantic sessions from semantic clusters. 2009International Conference on Informa-tion Management and Engineering . 2009
  • 8罗晓清,王士同.基于辅助空间与极大熵的半监督聚类方法[J].计算机工程与应用,2007,43(1):173-177. 被引量:2
  • 9王栋,向阳,张波.本体在数据挖掘系统中的应用研究[J].计算机工程与应用,2009,45(5):11-12. 被引量:7
  • 10Cheng Yang.Ontology-based fuzzy semantic clustering. Third2008International Conference on Convergence and Hybrid In-formation Technology . 2008

二级参考文献21

  • 1朱礼军,陶兰,刘慧.领域本体中的概念相似度计算[J].华南理工大学学报(自然科学版),2004,32(z1):147-150. 被引量:48
  • 2Agrawal R.Data mining : Crossing the chasm[R/OL]. (2002-11-20). http ://www.almaden.ibm.conYcs/people/ragrawal/papers/kdd99chasm.ppt.
  • 3Gruber TR.A translation approach to portable ontology specifications[J].Knowledge Acquisition, 1993,5 : 199-220.
  • 4Brost W N.Construction of engineering ontology for knowledge sharing and reuse[D1.Universitv of Twente.Enschede.1997.
  • 5Studer R,Benjamins V R,Fensel D.Knowledge engineering principles and methods[J].Data and Knowledge Engineering, 1998,25(1-2).
  • 6HANJW KAMBERM 范明 孟小峰 译.数据挖掘概念与技术[M].北京:机械工业出版社,2001..
  • 7KLEIN M,BERNSTEIN A.Searching services on the semantic:Web using process ontologies[C]//Proceedings of the International Semantic Web Working Symposium (SWWS).Amster2,dam:IOS Press,2001:159-172.
  • 8RESNIK P.Using information content to evaluate semantic similarity[C]//Proceedings of the 14th International Joint Conference on Artificial Intelligence.Montereal,1995:448-453.
  • 9JIANG J,CONRATH D.Semantic similarity based on corpus statistics and lexical taxonomy[C]//Proceeding of International Conference on Research on Computational Linguistics,Taiwan,1997.
  • 10LEACOCK C,CHODOROW M.Combining local context and WordNet similarity for word sense identification[M]//FELLBAUM C.WordNet:An electronic lexical database.[S.l.]:MIT Press,1998:265-283.

共引文献41

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部