期刊文献+

采用频谱脸和FLD的分量融合彩色人脸识别

Color face recognition based on fusion of components feature extracted by spectroface and FLD
下载PDF
导出
摘要 为了充分利用彩色信息而又不使算法过于复杂,提出了一种对彩色人脸图像进行识别的新方法,首先基于HSV空间提取S、V分量,然后分别采用频谱脸与FLD对其进行特征提取,再以两分量的融合特征作为分类依据进行识别。选取典型特征S和V,既保留了彩色信息又降低了复杂度。频谱脸实际上就是小波概貌图像的傅里叶幅度谱,其位移不变性和旋转不变性能有效消除因为人像表情变化和少许掩膜带来的识别误差。通过对ESSEX大学彩色人脸库的识别实验,验证了该方法有很好的识别能力。 A new method for color face recognition is proposed in order to make full use of color information but with little complexity.First of all,it extracts S and V components in HSV color space,and then extracts the spectroface and FLD feature separately,finally,it classifies and recognizes the feature according to the fusion of the two components.Extraction of only S and V can both retain the color information and reduce the complexity.The spectroface is actually the amplitude of Fourier transform of the wavelet general image,and its shift invariance and rotation invariance can effectively eliminate the error caused by the expression change and a little mask.Experiment on the ESSEX color face database verifies that this method has a good ability to recognition.
作者 张国政 姜威
出处 《计算机工程与应用》 CSCD 北大核心 2011年第23期188-190,200,共4页 Computer Engineering and Applications
关键词 彩色人脸识别 颜色空间 频谱脸 FISHER线性判别分析 特征融合 color face recognition color space spectroface Fisher linear discriminant analysis feature fusion
  • 相关文献

参考文献7

二级参考文献16

  • 1左坤隆,刘文耀.基于活动外观模型的人脸表情分析与识别[J].光电子.激光,2004,15(7):853-857. 被引量:19
  • 2[1]Kim Dae-Jin,Lee Sang-Wan,Bien Zeungnam.Facial Emotional Expression Recognition with Soft Computing Techniques[J].IEEE International Workshop on Robots and Human Interactive Communication,2005,13-15:661-666.
  • 3[2]Lee M C,Pun C M.Texture Classification using Dominant Wavelet Packet Energy Features[C]//Proc.of the 4th IEEE Southwest Symposium on Image Analysis and Interpretation,2000:301-304.
  • 4[3]Pantie M,Rothkrantz L J M.Automatic Analysis of Facial Expressions:The State of the Art[J].IEEE Trans.Pattern Anal.Mach Intell.,2000,22(12):1424-1445.
  • 5[4]Kresimir Delac,Mislav Grgic,Sonja Grgic.Statistics in Face Recognition Analyzing Probability Distributions of PCA,ICA and LDA Performance Results[C]//Image and Signal Processing and Analysis,2005,289-294.
  • 6[6]CO HymJcc,Kwak Keun-Chang,Lee Dae-Jong,etal.Emotion Recowition From the Facial Image and Speech Signal[C]//SICE Annual Conference,2003,2890-2895.
  • 7[7]Buciu I,Kotropoulos C Pitas I.ICA and Gabor representation for facial expression recognition[C]//ICIP.2003,2:855-8.
  • 8TORRES L,REUTTER J,LORENTE L.The importance of the color information in face recognition[C]//Intl Conf on Image Processing.Kobe,Japan:[s.n.],1999:627-631.
  • 9PAN Quan,ZHANG Mingui,ZHOU Delong,et al.Face recognition based on singular-value feature vectors[J].Optical Engineering,2003,42(8):2368-2374.
  • 10LIU K,JIANG R,CHENG Y Q,et al.Color human face image recognition based on statistical model[C]//CHEN Sushing.SPIE Neural and Stochastic Methods in Image and Signal Processing.1992:702-707.

共引文献45

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部