期刊文献+

基于DS-VSMM的声网络低空机动目标跟踪 被引量:8

Low Altitude Maneuvering Target Tracking with Acoustic Network Based on DS-VSMM
下载PDF
导出
摘要 针对低空机动目标的声网络无源跟踪问题,提出一种基于有向图切换的变结构多模型算法。首先,将多个声传感器组网并对其时延的方位角数据进行配准,改善无源声探测网络的融合性能。其次,通过变结构多模型对目标状态进行估计,并利用有向图切换方法对新激活的模型分配权重,跟踪结果为多个模型估计结果的融合输出。通过与交互式多模型算法的仿真比较,说明本文所提方法能更好的匹配目标运动规律,有效降低计算复杂度,提高跟踪精度。 In order to solve the problem of passive tracking low-altitude maneuvering target with acoustic network,a Digraph Switch Variable Structure Multiple Model (DS-VSMM) algorithm is proposed.First,acoustic sensors are networked and their time-delay bearing data is aligned,which improves the fusion performance of acoustic network.Second,a variable structure multi-model algorithm is used to estimate target state,in which the weight of new activated model is assigned by digraph switch method.Third,the system output is fused by multiple parallel models.Compared with the IMM method in simulation,the proposed algorithm can match actual target trajectory with less computational complexity and better accuracy.
出处 《光电工程》 CAS CSCD 北大核心 2011年第8期1-6,12,共7页 Opto-Electronic Engineering
基金 国家自然科学基金资助项目(60805013)
关键词 有向图切换 变结构多模型 声网络 机动目标跟踪 digraph switch VSMM acoustic network maneuvering target tracking
  • 相关文献

参考文献10

  • 1GUO Yun-fei, XUE An-ke, PENG Dong-liang, et al. A Recursive Algorithm for Bearings-only Tracking with signal Time Delay [J]. SignalProcessing(S0165-1684), 2008, 88(6): 1539-1552.
  • 2H A P Blom, Y Bar-Shalom. The interacting multiple model algorithm for systems with Markovian switching coefficients [J]. IEEE Transactions ouAutomatic Control(S0018-9286), 1988, 33(8): 780-783.
  • 3Mazor, A Averbush, Y Bar-Shalom, et al. Interacting multiple model methods in target tracking: A survey [J]. IEEE Transactions on Aerospace and Electronic Systems(S0018-9251), 1998, 34(1): 103-123.
  • 4李鸿艳,冯新喜.目标跟踪中的多模型算法发展综述[J].电讯技术,2003,43(2):12-15. 被引量:4
  • 5LI X R. Multiple-model Estimation with Variable Structure: Some Theoretical Considerations [C]//Proeeedings of the 33rd IEEE Conference on Deeision and Control, Lake Buena Vista, Florida, December 14-16, 1994: 1199-1204.
  • 6LI X R. Multiple-Model Estimation with Variable structure [J]. IEEE Transactions on Automatic Control(S0018-9286), 1996, 41(4): 478-493.
  • 7Torderi D J. Statistical theory of passive location systems [J]. IEEE Transactions on Aerospace and Electronic Systems(SO018-9251), 1984, 20(2): 183-198.
  • 8LI X R. Multiple Model Estimation with Variable Structure-Part II: Model-Set Adaptation [J]. IEEE Transactions on Automatic Control(S0018-9286), 2000, 45(11): 478-493.
  • 9黄翔宇,彭冬亮.基于无味有向图切换的机动目标跟踪VSMM算法[J].光电工程,2010,37(12):30-34. 被引量:14
  • 10Koteswara Rao S. Pseudo-linear estimator for bearing-only passive tracking, Radar Sonar and Navigation [J]. IEEE Proceedings(S1350-2395), 2001, 148(1): 16-22.

二级参考文献13

  • 1丁振,潘泉,张洪才,戴冠中.新息滤波交互式多模型噪声辨识算法[J].电子学报,1997,25(5):95-98. 被引量:14
  • 2宋福香.自适应互作用多模型(AIMM)算法在机动目标跟踪中的应用[J].现代防御技术,1994,(4):48-59.
  • 3何友,修建娟,张晶炜,等.雷达数据处理及应用[M].北京:电子工业出版社,2008:128-130,144-146.
  • 4Bar-Shalom Y, Li X R, Kirubarajan T. Estimation with Applications to Tracking and Navigation [M]. New Jersey: John Wiley& Sons, 2001: 441-460.
  • 5Bloomer L, Gray J E. Are more models better?: the effect of the model transition matrix on the IMM filter [C]// Proceedings of the Thirty-Fourth Southeastern Symposium on System Theory, Huntsville, Alabama, March 18-19, 2002: 20-25.
  • 6QU Hong-quan, LI Shao-hong. The Model Set Multiple Hypotheses IMM Algorithm for Maneuvering Target Tracking [C]//9th International Conference on SignalProcessing, Beiijing, China, Oct 26-29, 2008: 2302-2305.
  • 7Li X R. Multiple-Model Estimation with Variable Structure [J]. IEEE Transactions on Automation Control(S0018-9286), 1996, 41(4): 478-493.
  • 8Li X R. Multiple-Model Estimation with Variable Structure Part III: Model-Group Switching Algorithm [J]. IEEE Transactions on Aerospace and Electronic Systems(S0018-9251), 1999, 35(1): 225-241.
  • 9Li X R. Engineer's Guide to Variable-Structure Multiple-Model Estimation for Tracking. Multitarget-Multisensor Tracking: Applications and Advances Volume Ⅲ [M]. Boston: Artech House, 2000.
  • 10Yi, Ling, LU Ming. Research of Method for Tracking High Speed and Highly Maneuvering Target [C]//6th International Conference on ITS Telecommunication Proceedings, University of Electronic Science and Technology, Chengdu, China, June 21-23, 2006: 1236-1239.

共引文献15

同被引文献62

  • 1钟日进,陈琪锋.利用集群内测距和对目标测向的协同定位方法[J].航空学报,2020(S01):140-148. 被引量:11
  • 2肖乾.伪距GPS/INS组合导航系统的多模型自适应卡尔曼滤波器设计[J].船舶工程,2005,27(6):59-62. 被引量:5
  • 3卞鸿巍,李安,覃方君,等.现代信息融合技术在组合导航中的应用[M].北京:国防工业出版社,2010.
  • 4QIAN Huaming, AN Di, XIA Quanxi. IMM-UKF basedland-vehicle navigation with low-cost GPS/INS[C]//IEEE.Proceedings of the 2010 IEEE International Conference onInformation and Automation. Harbin: IEEE, 2010 : 2031-2035.
  • 5LI X R. Multiple-model estimation with variable structure:some theoretical considerations[C]//IEEE. 33rd IEEE Conf.Decision and Control. Lake Buena Vista: IEEE,1994:1199-1204.
  • 6LI X R,SHALOM Y B. Multiple-model estimation with vari-able structure[J]. IEEE Transactions on Automatic Control,1996,41(4):478-493.
  • 7刘高峰,顾雪峰,王华楠.强机动目标跟踪的两种MM算法设计与比较[J].系统真学报,2009,21(4):965-968.
  • 8ZHEN D,LANG H.A distributed IMM fusion algorithm for multi-platform tracking[J].Elsevier,1998,64:167-176.
  • 9WU P L,LI X X.Passive multi-sensor maneuvering target trac-king based on UKF-IMM Algorithm[C].WASE International Conference on Information Engineering,2009:135-138.
  • 10WU W R,CHENG P P.A nonlinear IMM algorith for maneuvering target tracking[J].IEEE Transactions on Aerospace and Electronic Systems,1994,30:875-885.

引证文献8

二级引证文献14

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部