期刊文献+

基于图形处理器的相位校正稳像

Phase Correction for Video Stabilization Based on GPU
下载PDF
导出
摘要 由于稳像算法中的运动估计占据整个算法60%~80%的运算量,并随着图像分辨率的提高,实时稳定连续图像序列的难度不断增加。本文提出一种基于图形处理器的相位校正策略,根据相位校正稳像算法数学模型,利用图像处理器统一并行架构与像素单线程模式,设计交叠复合相位运动估计结构,提升并行线程同步性能,缩短FFT并行运算时间;同时通过改变并行线程的尺度,调整图形处理器的存储方式,提升数据存储器的访问性能,改进了相位运动估计的并发性,可高品质估算视频需要稳定的旋转,平移等变量,以达到高速稳定1k×1k分辨率的灰度连续视频的目的。实验证明,平均稳定一帧图像时间约为10ms,有效提升了视频稳定的效率,增强了相位图像稳定工程应用的可能性。 Because motion estimation algorithm occupies 60~80% of the entire computation in image stabilization algorithm,and the difficulty increases with the improvement of image resolution and real-time stability of continuous image sequences,a GPU-based phase correction strategy for stabilization phase correction algorithm is presented.Based on mathematical models,a unified parallel architecture of image processor and pixel single-threaded mode are used,the phase of motion estimation overlapping composite structure is designed,improving the performance of the parallel thread synchronization.The computation time of parallel FFT is reduced.At the same time,change the scale of parallel threads,adjust the graphics processor storage,improve memory access performance data and motion estimation phase of concurrency,and estimate a stable rotation and translation etc.required for video in order to achieve fast and stable gray scale resolution of 1 k × 1 k purpose of continuous video.Experimental results show that the average time is about one frame stable 10ms,which effectively enhance the efficiency of video stabilization,and the possibility of image stabilization phase engineering applications.
机构地区 中国兵器工业第
出处 《光电工程》 CAS CSCD 北大核心 2011年第8期27-34,共8页 Opto-Electronic Engineering
基金 国防基础科研"十一五"资助项目(C1020060355)
关键词 稳像 通用图形处理器(GPGPU) 相位校正 FFT 运动估计 video stabilization GPGPU phase correction FFT motion estimation
  • 相关文献

参考文献15

  • 1CAI J, WALKER R. Robust motion estimation for camcorders mounted in mobile platforms [J]. The Conference of the Australian Pattern Recognition Society on Digital Image Computing: Techniques and Applications(S1325-3034), Canberra, Australia, Dec 1-3, 2008: 491-497.
  • 2LUCIO MARCENARO, GIANNt VERNAZA, REGAZZONI CARLO S. Image stabilization algorithm for video-surveillance application [J]. Proe. Int. Conf. Image Proeesslng(S2969-2972), 2001, 1: 349-352.
  • 3CAI J, WALKER R. Robust video stabilization algorithm using feature point selection and delta optical flow [J]. IET Computer Vision 2009(S1751-9632), 2009, 3(4): 176-188.
  • 4BATTIATO, GALLO S, PUGLISI G, et al. SIFT Features Tracking for Video Stabilization [C]// International Conference on Image Analysis and Processing, Modena, Italy, September 10-14, 2007: 825-830.
  • 5AMIN NAIT-ALI. Genetic Algorithms for Blind Digital Image Stabilization under Very Low SNR [J]. IEEE Transactions on Consumer Electronics(S0098-3063), 2007, 53(3): 857-884.
  • 6王洪,戴明,柏旭光.多尺度空间基于集中度判定的二维稳像算法[J].光电工程,2011,38(3):138-144. 被引量:2
  • 7FERENCZ A, LEARNED MILLER, MALIK E G. Leaming to Locate Informative Features for Visual Identification [J]. International Journal of Co.mputer Vision(S1573-1405), 2008, 77(1/3): 3-24.
  • 8KO S, LEE S H, JEON S W, et al. Fast digital image stabilizer based on Gray-coded bit-plane matching [J]. IEEE Trans. Consumer Electron(S0098-3063), 1999, 45(3): 598-603.
  • 9高莹莹,杨建峰,马晓龙,陈浩锋.基于Fourier-Mellin算法的干涉图像配准[J].光学精密工程,2007,15(9):1415-1420. 被引量:22
  • 10PAN Z, NGO C W. Selective Object Stabilization for Home Video Consumers [J]. IEEE Transactions on Consumer Electronics(S0098-3063), 2005, 51(4): 1074-1084.

二级参考文献18

共引文献157

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部