期刊文献+

基于加权Lucas-Kanade算法的目标跟踪 被引量:4

Object Tracking Based on the Weighted Lucas-Kanade Algorithm
下载PDF
导出
摘要 针对传统的序列图像目标跟踪方法难以适应复杂背景干扰、目标形状变化以及目标位置非规则抖动的问题,提出了一种基于加权Lucas-Kanade算法的目标跟踪新方法。首先引入搜索模板,估计出目标在实时图像中的位置并将其作为加权Lucas-Kanade算法的迭代初始值,然后计算权值函数,利用当前模板和初始模板进行两次跟踪,得到目标的准确位置。最后实现了在目标形状及背景变化下的三种模板更新。大量实测数据的实验结果表明,本文所提的方法有效地实现了对地面复杂场景中形变目标的稳定跟踪。 The traditional object tracking methods are difficult to deal with the interference of complex background,the variety of object shape and the irregular change of object position.A new object tracking method based on the weighted Lucas-Kanade algorithm is proposed.Firstly,a reasonable estimation of object position in current frame is obtained according to the search template.This position is used as initial iteration parameter of the weighted Lucas-Kanade algorithm.Secondly,the weights function is calculated and the accurate object position is achieved by tracking the current template and the initial template in current frame.Finally,the template update strategies under the complex background and the object shape variety are implemented.Experimental results based on a large amount of measured data show that the proposed method can effectively realize stable tracking of object in complex background.
出处 《光电工程》 CAS CSCD 北大核心 2011年第8期67-72,共6页 Opto-Electronic Engineering
基金 教育部新世纪优秀人才支持计划资助项目(NCET-06-0921)
关键词 目标跟踪 模板漂移 模板更新 Lucas-Kanade算法 权值函数 object tracking template drift template update Lucas-Kanade algorithm weights function
  • 相关文献

参考文献13

  • 1潘吉彦,胡波,张建秋.抑制模板漂移的目标跟踪算法[J].电子学报,2009,37(3):622-627. 被引量:13
  • 2高国旺,刘上乾,秦翰林,张峰.复杂背景下的红外目标自动跟踪算法[J].光电工程,2010,37(6):78-83. 被引量:6
  • 3邵文坤,黄爱民,韦庆.目标跟踪方法综述[J].影像技术,2006,18(1):17-20. 被引量:24
  • 4Lucas B, Kanade T. An Iterativelmage Registration Technique with an Application to Stereo Vision[C]//Proc. Internat. Joint Conf. on Artificial intelligence, 1981, 2: 674-679.
  • 5Black M J, Yacoob Y. Recognizing facial expressions in image sequences using local parameterized models of image motion [J]. InternationaldournalofComputerVision(S1573-1405), 1997, 25(1): 23-48.
  • 6Matthews lain, Ishikawa T, Baker S. The Template Update Problem [J]. IEEE Trans. Pattern Anal. Machine lntell (S0162-8828), 2004, 26(6): 810-815.
  • 7David Schreiber. Robust template tracking with drift correction [J]. Pattern Recognition Letters(S0167-8655), 2007, 28(12): 1483-1491.
  • 8WANG Kun-peng, YANG Gui. Robust Tracking Method with Drift Correction[C]/flEEE International Conference on Image Analysis and Signal Processing, Zhejiang, China, April 9-11, 2010: 403-406.
  • 9Simon Baker, Iain Matthews. Lucas-Kanade 20 years on: a unifying framework [J]. International Journal of Computer Vision(S1573-1405), 2004, 56(3): 221-255.
  • 10李宏友,汪同庆,叶俊勇.基于主动漂移矫正的运动目标跟踪算法[J].自动化学报,2009,35(3):310-314. 被引量:3

二级参考文献44

  • 1程建,杨杰.一种基于均值移位的红外目标跟踪新方法[J].红外与毫米波学报,2005,24(3):231-235. 被引量:42
  • 2张培,吴亚锋.一种改进的反向合成算法及其算子比较[J].计算机应用,2007,27(3):669-672. 被引量:1
  • 3张桂林,徐捷,郑云慧.频域相关技术在图像匹配中的应用[J].模式识别与人工智能,1997,10(1):87-92. 被引量:8
  • 4Lucas B D, Kanade T. An iterative image registration technique with an application to stereo vision. In: Proceedings of the 1981 DARPA Image Understanding Workshop. Vancouver, Morgan: Kaufmann Publishers, 1981. 121-130.
  • 5Dellaert F, Collins R. Fast image-based tracking by selective pixel integration. In: Proceedings of the ICCV Workshop on Frame-rate Vision. Corfu, Greece: IEEE, 1999. 1-22.
  • 6Baker S, Matthews I. Equivalence and efficiency of image alignment algorithms. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition. Kauai: IEEE, 2001. 1090-1097.
  • 7Baker S, Matthews I. Lucas-Kanade 20 years on: a unifying framework. International Journal of Computer Vision, 2004, 56(3): 221-255.
  • 8Hager G D, Belhumeur P N. Efficient region tracking with parametric models of geometry and illumination. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1998, 20(10): 1025-1039.
  • 9Ishikawa T, Matthews I, Baker S. Efficient Image Alignment with Outlier Rejection, Technical Report CMU-RI-TR- 02-27, Carnegie Mellon University, Robotics Institute, 2002[Online], available: http://www.ri.cmu.edu/people/ishikawa takahiro.html, January 1, 2007.
  • 10Matthews I, Ishikawa T, Baker S. The template update problem. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2004, 26(6): 810-815.

共引文献41

同被引文献21

  • 1陈浙泊,林斌.动态图像处理系统的设计与研究[J].光学仪器,2003,25(6):34-38. 被引量:1
  • 2Lucas B, Kanade T. An iterative image registration technique with an application to stereo vision [ C ]//Proc of DARPA Image Understanding Workshop. Washington, 1981 : 121 - 1B0.
  • 3Matthews I, Ishikawa T, Baker S. The template update problem[ J ]. IEEE transactions on Pattern Analysis and Machine Intelli- gence, 2004, 26(6):810-815.
  • 4Dowson N, Bowden R. Mutual information for Lucas-Kanade tracking (MILK) : an inverse compositional formulation[ J ]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2008, 30( 1 ) :180 -185.
  • 5Wang Kunpeng,Yang Gui. Robust tracking method with drift correction[ C]//IEEE International Conference on Image Analysis and Signal Processing. Hangzhou, 2010:403 - 406.
  • 6Eberhart R C, Kennedy J. A new optimizer using particle swarm theory[ C]//IEEE Symposium on Micro Machine and Human Science. Nagoya, 1995:39 -43.
  • 7SIMONCELLI E P. Design of multi-dimensional derivative filters[C]//Proceedings of the IEEE International Conference on Image Processing, Austin, 1994,1 : 791-793.
  • 8靳鹏飞.一种改进的Sobel图像边缘检测算法[J].应用光学,2008,29(4):625-628. 被引量:48
  • 9唐忠.粒子群算法惯性权重的研究[J].广西大学学报(自然科学版),2009,34(5):640-644. 被引量:11
  • 10夏毓鹏,王昕,胡锋.光流场算法中优化图像梯度数据可信度方法[J].计算机工程与应用,2010,46(4):163-165. 被引量:2

引证文献4

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部