期刊文献+

基于连续HMM的孤立语音鲁棒性识别方法 被引量:5

A Robust Recognition Method of Isolated Words Based On Continuous HMM
下载PDF
导出
摘要 对于基于连续隐马尔可夫模型(CHMM)的语音识别系统,为了提高系统在环境噪声下的鲁棒性,本文提出了一种能有效抑制加性平稳噪声和通道卷积噪声的相对自相关序列的Mel倒谱参数(RAS_MFCC+△RAS_NFCC),进行特征参数级的去噪,明显地改善了系统的噪声鲁棒性。为了进一步提高系统在低信噪比语音时的识别性能,我们采用了CHMM的混合语青训练法,获得了对各种信噪比语音都具有很强适应性的CHMM参数。实验证明。 In order to improve the lloise robustness of speech recognition system based on continuous Hidden MarkovModels(CHMM), Mel-frequency cepstrum coefficient of relative auto-corre1ation sequence (RAS_MFCC+ △ RAS_MFCC) isproposed to suppress additive stationary and convolution noise in the feature space. This method can be used to enhance thesystem robustness effectively as to improve the recognition rate in the low signal-to-noise ratio environment. We also adopt amethod called hybrid speech training of CHMM where the trained CHMM parameters have better adaptive ability to theenvironment with various signal-to-noise ratios. Experiments show that this method combining with noise suppression infeature space and compensation at system mode1 level can greatly improve system'S recognition performance in noisecontaminated environments.
出处 《电路与系统学报》 CSCD 1999年第4期19-23,共5页 Journal of Circuits and Systems
基金 国家自然科学基金!69872036
关键词 马尔可夫模型 鲁棒性 语音识别 CHMM Continuous HMM, Noise suppression feature Mixture speech training Robust speech recognition
  • 相关文献

参考文献1

  • 1韦晓东 朱杰 等.汽车噪声中自动语音识别技术[J].上海交通大学学报,1998,32(10):11-12.

同被引文献24

  • 1李孝安.神经网络与神经计算机导论[M].西安:西北工业大学出版社,1995,10..
  • 2李孝安,神经网络与神经计算机导论,1995年
  • 3Yao Kaisheng,EUROSPEECH',1999年,6卷,2873页
  • 4You Kuohwei,ICASSP,1998年,577页
  • 5杨行峻,语音信号数字处理,1995年
  • 6徐文盛,电路与系统学报,4卷,4期,19页
  • 7Hansen L K, Salamon P. Neural network ensmbles. IEEE Transactions on Pattem Analysis and Machine Intelligence, 1990, 12 (10): 993- 1001.
  • 8Zbou Z H, Wu J X, Tang W. Ensembling neural networks: Many could be better than all. Artificial Intelligence, 2002, 137 (1 -2):239-263.
  • 9Sehapire R E. The strength of weak learnability.Machine Learning, 1990, 5(2) :197-227.
  • 10Breiman L. Bagging predictors. Machine Learning, 1996, 24 (2):123-140.

引证文献5

二级引证文献20

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部