摘要
现有旅行规划问题的研究较少同时考虑旅行效用与网络时变两个因素,为此本文提出了一类时变条件下的旅行规划问题,考虑了三种约束:旅行者在网络节点上的驻留时间及在边上的旅行时间是时间依赖的、旅行者对网络的不同节点具有不同的偏好、旅行者的最大旅行时间是有限制的,应用时间集合图(time aggregated graph,TAG)表示旅行时空网络,建立了满足上述约束的求取最大旅行效用的旅行规划数学模型,并设计了相应的标号算法,最后进行了应用分析。与采用时间扩展图(time expanded graph,TEG)的方法相比,本方法虽然可能降低求解精度,但是大幅度地减少了计算成本。
The current researches on travelling planning problem hardly consider both utility and time varying.So this paper proposes a time varying travelling planning problem,which considers three constraints:(1) Node's residing time and edge's travelling time are time dependent in networks;(2) the traveller has different preference for each node;(3) The maximal travelling time is limited.The tavelling networks are represented by time aggregated graphs(TAG) firstly.Then,a mathmatical planning model for the problem is proposed,and a label method is designed.Finally,an example is demonstrated and the application is discussed.Compared to time expanded graph(TEG),the approach may has suboptimal solution,but it reduces the computational cost significantly.
出处
《中国管理科学》
CSSCI
北大核心
2011年第4期137-143,共7页
Chinese Journal of Management Science
关键词
时变
效用
时间集合图
标号算法
time varying
utility
time aggregated graph
label method