摘要
研究了广义超解析函数在可数条光滑闭曲线集L=sum from l=f to ∞(L_l)上的Riemann边值问题,其中L_l(l=1,2.……)凝聚于有限点z_0。根据Whitney延拓定理,利用超复积分算子,建立了问题的标准函数,从而得到了边值问题一般解的表示式、向题可解的充分必要条件以及线性无关解的个数与指标间的关系。
Suppose L=(?)L_l consists of the denumerable set of the smooth Jordan closed curves L_l (1=1, 2, …). In this paper, we consider Riemann boundary value problem on the curves L for generalized hyperanalytic function.
we have not only established an explicit form for the general solution of the Riemann problem, but also found the necessary and sufficient conditions for the solvability of the above problem. And the relation between the index and the number of the linear independent solution has ben obtained.
出处
《湘潭大学自然科学学报》
CAS
CSCD
1990年第4期9-16,共8页
Natural Science Journal of Xiangtan University
关键词
RIEMANN问题
广义解析函数
Riemann prqblem
integral operator/index
canonical function
fundamental kernel