K-controllability and Approximate K-controllability of Nonlinear Neutral Systems in Banach Spaces
K-controllability and Approximate K-controllability of Nonlinear Neutral Systems in Banach Spaces
摘要
In this paper, K-controllability and approximate K-controllability of non- linear neutral differential equations in Banach spaces are studied. Sufficient conditions are established for each of these types of controllability. The results are obtained by using Leray-Schauder theory.
In this paper, K-controllability and approximate K-controllability of non- linear neutral differential equations in Banach spaces are studied. Sufficient conditions are established for each of these types of controllability. The results are obtained by using Leray-Schauder theory.
基金
The Young Scholar Foundation of Institute of Mathematics of Jilin University
参考文献10
-
1Kartsatos, A. G. and Mabry, R. D., Controlling the space with pre-assigned responses, J. Optim. Theory Appl., 54(1987), 517-540.
-
2Kaplan, D. R. and Kartsatos, A. G., Ranges of sums and control of nonlinear evolutions with pressigned responses, J. Optim. Theory Appl., 81(1994), 121-141.
-
3Kartsatos, A. G. and Liang, C., Extending the class of pre-assigned responses in problems of K-controllability in general Banach spaces, Nonlinear Anal., 28(1997), 235-245.
-
4Kartsatos, A. G., On the approximate K-controllability of nonlinear systems in Banach spaces, Nonlinear Anal., 62(2005), 315-344.
-
5Grimmer, R. and Liu, J. H., Integrated semigroups and integrodifferential equations, Semi- group Forum, 48(1994), 79-95.
-
6Lin, Y. and Liu, J. H., Semilinear integrodifferential equations with nonlocal Cauchy problem, Nonlinear Anal., 26(1996), 1023-1033.
-
7Barbu, V., Nonlinear Semigroups and Differential Equations in Banach Spaces, Noordhoff International Publishing, Leyden, The Netherlands, 1975.
-
8Browder, F., Nonlinear operators and nonlinear equations of evolution in Banach spaces Proc. Sympos. Pure Appl. Math, Vol. 18, Part 2, Amer. Math. Soc. Providence, R. I., 1976.
-
9Cioranescu, I., Geometry of Banach Spaces, Duality Mapping and Nonlinear Problems, Kluwer Academic Publishers, Boston, 1990.
-
10Lakshmikantham, V. and Leela, S., Nonlinear Differential Equations in Abstract Spaces, Pergamon Press, Oxford 1981.
-
1曹晓敏.二阶脉冲微分方程三点边值问题解的存在性[J].数学的实践与认识,2004,34(3):148-153. 被引量:10
-
2刘光辉,刘兰初,陈大学.测度链上一类具偏差变元的微分方程组的非振动解[J].邵阳学院学报(自然科学版),2008,5(1):9-11.
-
3陈世明.Schauder——Tychonff不动点定理在偏微分方程上的应用[J].韶关师专学报,1989(3):12-22.
-
4钟金标.一类半线性椭圆型方程正径向解的存在性[J].安庆师范学院学报(自然科学版),2004,10(1):1-2.
-
5相秀芬,蔡谋全.迭代微分方程的初值问题[J].承德石油高等专科学校学报,2003,5(2):21-22.
-
6Chong Li,Renxing Ni,G.A.Watson.ON NONLINEAR COAPPROXIMATION IN BANACH SPACES[J].Analysis in Theory and Applications,2001,17(2):54-63.
-
7吴晓非.一类n维非自治系统的周期解[J].数学杂志,1996,16(4):485-489.
-
8吴晓非,曹贤通,汪远征,孙丽英.一类非线性积分方程的周期解(Ⅱ)[J].纺织高校基础科学学报,1999,12(4):318-320.
-
9步尚全.THE ANALYTIC KREIN-MILMAN PROPERTY IN BANACH SPACES[J].Acta Mathematica Scientia,1998,18(1):17-24.
-
10薛卫勤,李永钊,吴保卫.不确定时滞微分中立系统的稳定性条件[J].宝鸡文理学院学报(自然科学版),2009,29(4):7-11.