期刊文献+

小波——伽辽金法的有限元模型 被引量:1

Wavelet Finite Element Model of Galitzin Method
下载PDF
导出
摘要 由于小波 伽辽金法是以待求函数的小波系数为求解量,而不象有限元或有限差分类方法中以节点位函数值为求解变量。因此,小波 伽辽金法对于边界条件的处理不如有限元类算法简单、灵活。故本文选择一般的Daubechies小波作基函数,根据其支撑性,提出了一种应用上的边界处理方法。 Because waveletGalitzin method is taken to the finding out a function′s wavelet factor as the solving magnitude, which doesn′t like the methods of finite element and finite difference that both take functional value at phrasing points as the finding variable. Therefrom, the use of waveletGalitzin method to deal with the boundary conditions is not so simple and flexible as that the method of finite element. However, this paper has chosen a common Daubechies which tates wavelet as the basic function. Basing upon the supporting feature, this paper proposes the method with which the boundary to be handled and be dealt with is suggested for application.
出处 《辽宁工学院学报》 1999年第5期18-21,共4页 Journal of Liaoning Institute of Technology(Natural Science Edition)
基金 辽宁省教委基金
关键词 有限元 泊松问题 小波-伽辽金法 小波系数 relational factor boundary cross section phrasing points′ number finite element inner product
  • 相关文献

参考文献2

二级参考文献7

  • 1崔翔,华北电力学院学报,1992年,增刊
  • 2袁志勇,硕士学位论文,1992年
  • 3盛剑霓,工程电磁场数值分析,1991年
  • 4邵汉光,中国电机工程学报,1983年,3期,30页
  • 5王建忠,数学进展,1992年,21卷,289页
  • 6邓东皋,数学进展,1991年,20卷,294页
  • 7李世雄

共引文献16

同被引文献5

  • 1Daubecies I. Ten Lecture on Wavelet [M].Society for Industrial and Applied Mathematics Philadelphia:Pennsylvania,1992.
  • 2Ming Quayer Chen, Chyi Hwang, Yen Ping Shih. A Wavelet-Galerkin method for solving population balance equations [J]. Computers Chem. Engng 1996,20(2) :131-145.
  • 3Roger Ghanem, Francesco Romeo. A wavelet-based approach for the identification of linear time-varying dynamical systems [J]. Journal of Sound Vibration 2000,234(4) :555-576.
  • 4Latto A, Resnidoff H L, Tenenbaum E. The evaluation of connection coefficients of compactly supported wavelets. Proceedings of the French-USA. Workshop on Wavelets and Turbulence, Princeton University. New York: Springer, 1992.
  • 5Ming Quayer Chen, Chyi Hwang, Yen Ping Shih. The computation of Wavelet-Galerkin approximation on a bounded interval [J]. International Journal for Numerical Methods in Engineering 1996,39:2921-2944.

引证文献1

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部