摘要
为了解决BP网络在学习过程中存在收敛慢的缺点,文中将GaussSeidel 迭代法的基本思想与BP算法结合,将每一个最新修正的权值反映到下一个权值的修正中,提出了一种新的BPGS学习算法来加速BP网络的收敛。文章最后的计算机仿真说明BPGS总体上可以减少学习的时间,尤其当误差值逼近最小点时效果明显。
To solve the problem of the slowness of convergence in the learning process of BP network,this paper integrates the idea of Gauss Seidel algorithms into BP algorithms and makes use of the newly corrected weight while correcting next weight.The imitation of computer proves that BP G S algorithm may decrease learning time in the whole.The effect is obvious especially when the error value is near to the optimal point.
出处
《南京理工大学学报》
EI
CAS
CSCD
1999年第4期308-311,共4页
Journal of Nanjing University of Science and Technology