期刊文献+

Al/Ti/4H-SiC Schottky barrier diodes with inhomogeneous barrier heights 被引量:1

Al/Ti/4H-SiC Schottky barrier diodes with inhomogeneous barrier heights
下载PDF
导出
摘要 This paper investigates the current-voltage (I-V) characteristics of Al/Ti/4H-SiC Schottky barrier diodes (SBDs) in the temperature range of 77 K-500 K, which shows that Al/Ti/4H SiC SBDs have good rectifying behaviour. An abnormal behaviour, in which the zero bias barrier height decreases while the ideality factor increases with decreasing temperature (T), has been successfully interpreted by using thermionic emission theory with Gaussian distribution of the barrier heights due to the inhomogeneous barrier height at the A1/Ti/4H-SiC interface. The effective Richardson constant A* = 154 A/cm2 . K2 is determined by means of a modified Richardson plot In(I0/T2) - (qσ)2/2(κT)2 versus q/kT, which is very close to the theoretical value 146 A/cm2 · K2. This paper investigates the current-voltage (I-V) characteristics of Al/Ti/4H-SiC Schottky barrier diodes (SBDs) in the temperature range of 77 K-500 K, which shows that Al/Ti/4H SiC SBDs have good rectifying behaviour. An abnormal behaviour, in which the zero bias barrier height decreases while the ideality factor increases with decreasing temperature (T), has been successfully interpreted by using thermionic emission theory with Gaussian distribution of the barrier heights due to the inhomogeneous barrier height at the A1/Ti/4H-SiC interface. The effective Richardson constant A* = 154 A/cm2 . K2 is determined by means of a modified Richardson plot In(I0/T2) - (qσ)2/2(κT)2 versus q/kT, which is very close to the theoretical value 146 A/cm2 · K2.
出处 《Chinese Physics B》 SCIE EI CAS CSCD 2011年第8期384-388,共5页 中国物理B(英文版)
基金 Project supported by the National Natural Science Foundation of China (Grant No. 60876061) the Key Laboratory Science Foundation (Grant No. 20090C1403)
关键词 Schottky contact 4H-SIC barrier height inhomogeneity TEMPERATURE Schottky contact, 4H-SiC, barrier height inhomogeneity, temperature
  • 相关文献

参考文献12

  • 1Zhao J H, Alexandorov P and Li X 2003 IEEE Electron Device Lett. 24 402.
  • 2Song Q W, Zhang Y M, Zhang Y M, Lii H L, Chen F P and Zheng Q L 2009 Chin. Phys. B 18 5474.
  • 3Saxena V, Jian N S and Steckl A J 1999 IEEE Trans. Electron Devices 46 456.
  • 4Song Q W, Zhang Y M, Zhang Y M, Zheng Q and Lu H L 2010 Chin. Phys. B 19 087202.
  • 5Via F L, Calvagno G, Roccaforte F, Ruggiero A and Calcagno L 2005 Appl. Phys. Lett. 87 142105.
  • 6Pakma 0, Serin N, Serin T and Altindal X 2008 J. Appl. Phys. 104 014501.
  • 7Defives D, Noblanc O, Dua C, Brylinski C, Barthula M, Fortuna V A and Meyer F 1999 IEEE Trans. Electron Devices 46 449.
  • 8Yidiz D E, Altindal S and Kanbur H 2008 J. Appl. Phys. 103 124502.
  • 9Ewing D J and Porter L M 2007 J. Appl. Phys. 101 114514.
  • 10Biber M, Gullu O, Duman S and Turut A 2007 Appl. Surf. Sci. 253 7246.

同被引文献10

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部