期刊文献+

Top contact organic field effect transistors fabricated using a photolithographic process

Top contact organic field effect transistors fabricated using a photolithographic process
下载PDF
导出
摘要 This paper proposes an effective method of fabricating top contact organic field effect transistors by using a pho- tolithographic process. The semiconductor layer is protected by a passivation layer. Through photolithographic and etching processes, parts of the passivation layer are etched off to form source/drain electrode patterns. Combined with conventional evaporation and lift-off techniques, organic field effect transistors with a top contact are fabricated suc- cessfully, whose properties are comparable to those prepared with the shadow mask method and one order of magnitude higher than the bottom contact devices fabricated by using a photolithographic process. This paper proposes an effective method of fabricating top contact organic field effect transistors by using a pho- tolithographic process. The semiconductor layer is protected by a passivation layer. Through photolithographic and etching processes, parts of the passivation layer are etched off to form source/drain electrode patterns. Combined with conventional evaporation and lift-off techniques, organic field effect transistors with a top contact are fabricated suc- cessfully, whose properties are comparable to those prepared with the shadow mask method and one order of magnitude higher than the bottom contact devices fabricated by using a photolithographic process.
出处 《Chinese Physics B》 SCIE EI CAS CSCD 2011年第8期389-393,共5页 中国物理B(英文版)
基金 Project supported by the National Basic Research Program of China (Grant Nos. 2011CB808404 and 2009CB939703) the National Natural Science Foundation of China (Grant Nos. 10974074,90607022,60676001,60676008,and 60825403)
关键词 organic field effect transistors top contact photolithographic organic field effect transistors, top contact, photolithographic
  • 相关文献

参考文献26

  • 1Ju S, Li J, Liu J, Chen P, Ha Y, Ishikawa F, Chang H, Zhou C, Facchetti A, Janes D and Marks T 2008 Nano Lett. 8 997.
  • 2Someya T, Sekitani T, Takamiya M, Sakurai T, Zschiesching U and Klauk H 2009 IEDM, Tech. Dig. p. 29.
  • 3Crone B, Dodabalapur A, Lin Y, Filas R, Bao Z, LaDuca A, Sarpeshkar R, Katz H and Li W 2000 Nature 403 521.
  • 4Hamilton R, Smith J, Ogler S, Heeney M, Anthony J, McCulloch I, Veres J, Bradley D and Anthopoulos T 2009 Adv. Mater. 21 1166.
  • 5Tao C, Zhang X, Dong M, Liu Y, Sun S, Ou G, Zhang F and Zhang H 2008 Chin. Phys. B 17 281.
  • 6Zhang L, Hua Y, Wu X, Wang Y and Yin S 2008 Chin. Phys. B 17 3097.
  • 7Rotzoll R, Mohapatra S, Olariu V, Wenz R, Grogs M and Dimmler K 2006 Appl. Phys. Lett. 88 123502.
  • 8Klauk H, Zschieschang U, Pflaum J and Halik M 2007 Nature 445 745.
  • 9Tang Q, Tong Y, Hu W, Wan Q and Bjornholm T 2009 Adv. Mater. 21 4234.
  • 10Park J, Yang R, Colesniuc C, Sharoni A, Jin S, Schuller I, Trogler W and Kummel A 2008 Appl. Phys. Lett. 92 193311.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部