期刊文献+

复杂环境下尺度不变特征的检测与匹配技术研究 被引量:4

Research on Scale Invariant Feature Extraction and Matching Technique in Complex Environment
下载PDF
导出
摘要 针对农业机器人复杂的工作环境,引入了一种新的鲁棒特征点检测算法——SURF算法,其对光照变化、旋转、尺度变化等具有很好的鲁棒性,精度能达到亚像素级别;在此基础上,利用最近邻法则结合BBF(best bin first)搜索算法,对SURF特征点进行精确匹配,实验表明,所提出的方法鲁棒性或实时性较目前常用的Harris算法和SIFT算法更好,可应用在机器人视觉定位、地图构建、智能导航等方面,具有一定的理论和应用价值。 Aimed at the complex work environment of agricultural robots, a new robust feature point detection algorithm-SURF algorithm is introduced. It shows good robustness in environment where exist illumination, rota- tion, or scale change, and achieve sub-pixel precision level; on this basis, the nearest neighbor rule and BBF (best bin first) search algorithm are used to do many feature points matching experiments. The result shows that the method is more robust than Harris and has better real time than SIFT algorithm. It has some theoretical and practical value in robot vision localization, map building, intelligent navigation, etc.
作者 郑玉龙
出处 《科学技术与工程》 2011年第23期5693-5696,5701,共5页 Science Technology and Engineering
关键词 复杂环境 尺度不变 SURF 特征检测与匹配 complex environment seale-invariant SURF feature extraction and matching
  • 相关文献

参考文献8

  • 1Lowe D G. Distinctive image teatuees from scale-lnvariant key points. International Journal of Computer Vision, 2004 ;60 (2) : 91 -110.
  • 2Harris C, Stephens M. A combined corner and edge detector. Proceedings of the 4th Alvey Vision Conference, 1988:147-151.
  • 3Schmid C, Mohr R, Bauckhage Ch. Comparing and evaluating interest points. Proceedings of IEEE lnternatiorml Conference on Computer Vision, 1998:230-235.
  • 4Bay H, Tuytelaars T, Van Gool L. SURF: Speed up robust features. Proceedings of the European Conference on Computer Vision ,2006; Part 1:404-417.
  • 5田伟刚,郭雷,黄雷.一种应用于图像配准中的点特征匹配算法[J].微电子学与计算机,2008,25(3):172-174. 被引量:14
  • 6葛成,胡福乔,赵宇明.基于SURF特征的高动态范围图像配准算法[J].微型电脑应用,2010,26(2):8-9. 被引量:3
  • 7谭磊,张桦,薛彦斌.一种基于特征点的图像匹配算法[J].天津理工大学学报,2006,22(6):66-69. 被引量:11
  • 8Beis J S, Lowe D G, Shape indexing using approximate nearest- neighbour search in high-dimensional spaces, Conference on Computer Vision and Pattern Recognition, 1997 : 1000-10007.

二级参考文献19

  • 1乔玉龙,潘正祥,孙圣和.一种改进的快速k-近邻分类算法[J].电子学报,2005,33(6):1146-1149. 被引量:25
  • 2[1]LOWED G.Shape indexing using approximate nearestneighbour search in high-dimensional spaces[J].IEEE Conf Comp Vision Patt Recog,1999,2:1150-1157.
  • 3[2]PAN J S,QIAO Y L,SUN S H.A fast k nearest-neighbours classification algorithm[J].IEICE Trans Fundamentals,2004(4):961-963.
  • 4[3]MALLAT S.A theory of multiresolution signal decomposition:the wavelet representation[J].IEEE Trans Patt Anal and Mach Intell,1989,11(7):674-693.
  • 5[4]VETFERLI M,KOVACEVIE J.Wavelet and subband coding[M].NJ:Prentice-Hall,Englewood Cliffs,1995.
  • 6Debevec P,Malik J.Recovering High Dynamic Range Radiance Maps from Photographs[C]//Proceedings of the 24th annual conference on Computer graphics and interactive techniques(0-89791-896-7),1997,369-378.
  • 7Mitsunaga T,Nayar S K,Radiometric Self Calibration[J].Computer Vision and Pattern Recognition,1999,(1):380.
  • 8Tomaszewska A,Mantiuk R.Image Registration for Multi-exposure High Dynamic Range Image Acquisition[C]//WSCG 2007,Full Papers Proceedings I and II,2007,49-56.
  • 9Ward G Fast,Robust Image Registration for Compositing High Dynamic Range Photographs from Handheld Exposures[J].Journal of Graphics Tools,2003,8(2):17-30.
  • 10Bay H.SURF:Speeded Up Robust Features[J].Computer Vision and Image Understanding,San Diego:Academic Press lnc Elsevier Science,2008,110(3):346-359.

共引文献25

同被引文献35

  • 1高颖,陈东岳,张立明.一种带有实时视觉特征学习的自主发育机器人探索[J].复旦学报(自然科学版),2005,44(6):964-970. 被引量:6
  • 2吴德伟,邰能建,戚君宜.基于认知理论的UCAV智能导航研究新进展[J].空军丁程大学学报:自然科学版,2011,12(4):52-57.
  • 3HARRIS C,STEPHENS M. A combined comer and edge detector[ EB/ OL]. [ 2012-11-20 ]. http ://citeseerx. ist. psu. edu/viewdoc/summary? doi = 10.1. 1. 231. 1604.
  • 4LOWED G. Object recognition from local scale-invariant feature[ C ]// Proc. IEEE International Conference of Computer Vision. Kerkyra, Greece : IEEE Press, 1999 : 1150-1157.
  • 5BAY H,TUVTELLARS T, GOOL L V. SURF: speeded up robust feature [ C]//Proc. the European Conference on Computer Vision. Graz, Aus- tria : University of Liubljanna ,2006:404-417.
  • 6LINDEBERG T. Feature deteetion with automatic scale selection [ J ]. In- ternational Journal of Computer Vision, 1998,30(2) :79-116.
  • 7CHEN Long,Ll Qingquan,Ll Ming,et al. Traffic sign detection and rec- ognition for intelligent vehicle [ C ]//Proc:. IEEE Intelligent Vehicles Symposium. [ S. l. ] : IEEE Press ,2011:908-913.
  • 8SONG Kaitai, CHANG Chehao. Objiect pose estimation for grasping based on robust center point detection[ C]//Proc. Asian Control Con- ference. [ S. l. ] : IEEE Press,2011:305-310.
  • 9VIOLA P,JONES M. Rapid objiect detection using a boosted cascade of simple feature[C]//Proc. IEEE Conference on Computer Vision and Pattern Recognition. [ S. l. ] : IEEE Press,2001 : 1511-1518.
  • 10O' Keefe J, Nadel L. The hippocampus as a cognitive map [M]. New York:Oxford university press,1978.

引证文献4

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部