期刊文献+

特征值互不相同的图(英文)

On Graphs with Distinct Eigenvalues
下载PDF
导出
摘要 F.Harary和A.J.Schwenk[1]给出了一个开放性问题:什么样的图具有互不相同的特征值?到目前为止关于这方面的研究还很少.在本文中,将完全刻画了直径为d=n 2的连通二部图具有n个互不相同特征值的情况.最后,对直径为d=n 2的连通非二部图的情况给出了部分结果. In paper [1] EHarary and Schwenk give an open problem: Which graphs have distinct eigenvalues? Unfortunately, there have been few results on the question. In this paper, we will characterize the connected bipartite graphs that has n distinct eigenvalues with diameter d = n - 2 and give some results about the graphs which are non-bipartite with d = n - 2 in the end.
出处 《新疆大学学报(自然科学版)》 CAS 2011年第3期299-308,共10页 Journal of Xinjiang University(Natural Science Edition)
基金 Supported by NSFC Grant(No.10961023)
关键词 特征多项式 特征值 二部图 直径 characteristic polynomial eigenvalues bipartite graphs diameter
  • 相关文献

参考文献9

  • 1Harary F, Schwenk A J. Which graphs have integral spectra[M]. Spring-Verlag, Berlin-Heidelberg-New York. 1974, 45-51.
  • 2Mowshowitz A. The group of a graph whose adjacency matrix has all distinct eigenvalues[J]. Proof techniques in graph theory, New York; Academic press. 1969, 109-110.
  • 3Chao Chongyun. A note on the eigenvalues of a graph[J]. Jotlrnal of combinatrial theory. 1971, 10: 301-302.
  • 4Cvetkovic D M, Doob M, Sachs H. Spectra of Graphs[M]. Second edition, New York; JAcademic Press. 1980.
  • 5Collatz L, Sinowinz U. Spekttren endlicher Gradfen[J]. Abh Math Sem Univ Hamburg, 1957, 21: 63-77.
  • 6Doob M, Haemers W H. The complement of the path is determined by its spectrum[J]. Linear Algebra App1, 2002, 356: 57-65.
  • 7Schwenk A J. Computing the characteristic polynomial of a graph, Graphs and combinatioric[J]. Lect Notes in Math, 1973, 406: 275-307.
  • 8Godsil C, Royle G. Algebraic graph theory[M]. Springer-vedag New York, Inc. 2001.
  • 9Cvetkovic D M, Rowlinson P, Simic S. An Introduction to the Theory of Graph Spectra[M]. Cambridge University Press-New York, 2010.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部