摘要
综合考虑齿侧间隙、时变啮合刚度、综合啮合误差等因素,建立了直齿轮副单自由度非线性动力学模型,并利用变步长Runge-Kutta法对单自由度运动微分方程进行了数值求解。结合系统的分岔图、相图、Poincaré映射图以及FFT频谱图,分析了系统在参数变化时的动力学特性,得到了系统的混沌运动规律。结合齿轮的动载荷历程,得到了齿轮啮合冲击状态在非冲击、单边冲击以及双边冲击状态之间变化时变化过程与系统参数之间的关系。
A nonlinear dynamics model for a spur gear pair system was established where the backlash,the time-varying stiffness and the transmission error were considered.The nonlinear single-degree-of-freedom equations were solved by employing variable step size Runge-Kutta integration method.The nonlinear dynamics characteristics of the system were discussed for different system parameters and classified based on bifurcation diagrams,phase portraits,Poincaré maps and Fourier spectra.The chaotic motion was obtained.By means of analyzing the variation law of dynamic load,the relations between transformation process and backlash in the engaging state,which varies among the states of non-impact,single sided impact and double-sided impact,of gear system were discussed.
出处
《中国机械工程》
EI
CAS
CSCD
北大核心
2011年第16期1922-1928,共7页
China Mechanical Engineering
基金
甘肃省自然科学基金资助项目(0803RJZA012
0916RJZA030)
关键词
非线性动力学
混沌
分岔
动载荷
nonlinear dynamics
chaos
bifurcation
dynamic load