期刊文献+

氧化物弥散增强低活化铁素体/马氏体9Cr钢的显微组织与拉伸性能

Microstructure and Tensile Properties of 9Cr-ODS RAFM Steel
下载PDF
导出
摘要 采用粉末冶金法制备了核聚变反应堆第一壁候选结构材料——氧化物弥散强化低活化9Cr钢,采用XRD、OM、SEM、EDS等对合金化之后的粉体及烧结体的组织进行了分析,讨论了球料比对粉体特性以及烧结温度对烧结体组织与抗拉强度的影响。结果表明:球料比为20:1、球磨48 h的粉体颗粒呈片层状,尺寸较均匀,合金化效果较好;烧结温度在1300~1390℃范围内,随着温度的提高,烧结体的孔隙率降低,组织更加均匀,抗拉强度由376.0MPa逐渐增大到562.9MPa,伸长率同步增大,最大为20.2%。 The method of powder metallurgy was used to prepare nuclear fusion reactor first-wall structural materials 9Cr-ODS RAFM steel, the microstructure of powders after alloying and sintered specimen was analyzed by using XRD, OM, SEM and EDS, and the effects of ratio of grinding media to material on powders characteristics and sintering temperature on the microstructure and tensile strength of sintered bodies were discussed. The results show that the alloying was better and the powders presented flake and uniform size when the ratio of grinding media to material was 20 : 1 and hall-milling time was 48 h. When the sintering temperature was 1 300- 1 390℃, the porosity of sintered bodies decreased, microstructure was more uniform, tensile stren, gth increased gradually from 376. 0 MPa to 562. 9 MPa and the elongation increased in step with tensile strength, its maximum was 20. 2%.
出处 《机械工程材料》 CAS CSCD 北大核心 2011年第8期62-65,共4页 Materials For Mechanical Engineering
基金 聚变堆面向等离子体材料的基础研究项目(2010GB109000) 国家自然科学基金重点资助项目(50634060)
关键词 氧化物弥散增强低活化铁素体/马氏体9Cr钢 机械合金化 烧结温度 抗拉强度 9Cr-ODS RAFM steel mechanical alloying sintering temperature tensile strength
  • 相关文献

参考文献14

二级参考文献33

  • 1黄群英,郁金南,万发荣,李建刚,吴宜灿.聚变堆低活化马氏体钢的发展[J].核科学与工程,2004,24(1):56-64. 被引量:88
  • 2吴宜灿,柯严,郑善良,汪卫华,储德林,黄群英,刘晓平,许德政,王红艳,黄德所,朱晓翔,高纯静,李静惊,陈义学,吴斌,汪太平,柏云清,章毛连,刘松林,罗月童,刘萍,李春京,李强,童莉莉,翁晓毅,吴磊,王祥科,FDS课题组.聚变驱动次临界堆概念设计研究[J].核科学与工程,2004,24(1):72-80. 被引量:53
  • 3万发荣,褚武扬,肖纪美,高桥平七郎.Fe-10%Cr铁素体合金中氢对辐照诱起偏析的影响[J].物理学报,1996,45(3):464-469. 被引量:1
  • 4赵飞,万奎贝,乔建生,万发荣,马纪东,许咏丽,吴宜灿.低活化马氏体钢的微观结构与力学性能[J].核科学与工程,2007,27(1):59-63. 被引量:12
  • 5Lee E H, HunnJ D, ByunTS, et al. Effect of helium on radiation induced defect microstructure in austenitic stainless steel. Journal of Nuclear Materials, 2000, 280: 18-24.
  • 6Wakai E. Ando M, Sawai T, et al. Effect of gas atoms and displacement damage on mechani eal properties and microstructures of F82H. Journal of Nuclear Materials, 2006, 356: 95-104.
  • 7Yamamoto N, Murase Y, Nagakawa J. An evaluation of helium embrittlement resistance of reduced activation martensitic steels. Fusion Engineering and Design, 2006. 81: 1085-1090.
  • 8Yu J N, Zhao X J, Zhang W, et al. Defect production and accumulation under hydrogen and helium ion irradiation. Journal of Nuclear Materials, 1997, 251: 150-156.
  • 9Ogiwara H, Kohyama A, Tanigawa H. et al.Irradiation induced hardening mechanism of ion irradiated JLF- 1 to high fluenees. Fusion Engineering and Design, 2006, 81: 1091-1097.
  • 10Zhao F, Qiao J S. Huang Y N, et al. Effect of irradiation temperature on void swelling of China low activation martensitic steel (CLAM). Materials Characterization. 2008, 59: 344-347.

共引文献150

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部