期刊文献+

高温低周疲劳-蠕变的改进型广义应变能损伤函数方法 被引量:9

Improved Generalized Strain Energy Damage Function Method for High Temperature Low Cycle Fatigue-creep
原文传递
导出
摘要 通过对广义应变能损伤函数(GSEDF)法进行分析,用非弹性应变能表征低周疲劳(LCF)损伤,提出了一种高温低周疲劳-蠕变(LCF-C)寿命预测的改进型GSEDF模型,修正了GSEDF法中的能量参数,使其与工程实际更吻合。所提出的模型具有模型参数少、适用性广和试验数据利用率高等优点,且能综合反映加载方式、保载时间和平均应力的影响。最后,应用该模型对文献试验数据和轮盘用GH4133高温合金在不同温度和应变比(应力比)下的疲劳-蠕变寿命进行了预测,预测结果与实测结果吻合较好,精度明显优于GSEDF模型、SWT模型、应变能频率修正法和塑性应变能密度法。 The generalized strain energy damage function(GSEDF) model for low cycle fatigue-creep(LCF-C) is investigated,and by using the inelastic strain energy as an LCF damage parameter,an improved GSEDF model is proposed for high temperature low cycle fatigue-creep life prediction of high temperature components,which modifies the energy parameter in GSEDF model and is more consistent with the actual engineering than the GSEDF model.The proposed model has the advantage of less parameters in the expression of this model,wide application and higher utilization efficiency of experimental data.Furthermore,this model not only considers the mechanism of loading waveform and hold time,but also the mean stress effects on LCF life.The predicted fatigue lives based on the proposed model are found in good agreement with reported experimental results of aircraft turbine disk alloys GH4133 at different temperatures and strain(stress) ratios.Compared with the GSEDF model,the SWT model,the plastic strain energy density method and the strain energy frequency modified approach,the proposed model is widely applicable and more precise in predicting the life of low cycle fatigue-creep interaction.
出处 《航空学报》 EI CAS CSCD 北大核心 2011年第8期1445-1452,共8页 Acta Aeronautica et Astronautica Sinica
基金 国家自然科学基金(51075061)~~
关键词 疲劳 蠕变 应变能 寿命预测 高温 能量耗损 fatigue creep strain energy life prediction high temperature energy dissipation
  • 相关文献

参考文献18

  • 1尹泽勇. 航空发动机设计手册: 第18册, 叶片轮盘及主轴强度分析[M]. 北京:航空工业出版社, 2007: 807-821.
  • 2Ostergren W J. A damage foundation hold time and frequency effects in elevated temperature low cycle fatigue[J]. Journal of Testing and Evaluation, 1967(4): 327-339.
  • 3Koh S K. Fatigue damage evaluation of a high pressure tube steel using cyclic strain energy density[J]. International Journal of Pressure Vessels and Piping, 2002, 79(12): 791-798.
  • 4Wang Y L. A generalized frequency modified damage function model for high temperature low cycle fatigue life prediction[J]. International Journal of Fatigue, 1997, 19(4): 345-350.
  • 5Goswami T. Low cycle fatigue life prediction—a new model[J]. International Journal of Fatigue, 1997, 19(2): 109-115.
  • 6Lee K O, Hong S G, Lee S B. A new energy-based damage parameter in life prediction of high-temperature structural materials[J]. Materials Science and Engineering: A, 2008, 496(1-2): 471-477.
  • 7Zhu S P, Huang H Z. A generalized frequency separation-strain energy damage function model for low cycle fatigue-creep life prediction[J]. Fatigue & Fracture of Engineering Materials & Structures, 2010, 33(4): 227-237.
  • 8Payten W M, Dean D W, Snowden K U. A strain energy density method for the prediction of creep-fatigue damage in high temperature components[J]. Materials Science and Engineering: A, 2010, 527(7-8): 1920-1925.
  • 9Maurel V, Remy L, Dahmen F, et al. An engineering model for low cycle fatigue life based on a partition of energy and micro-crack growth[J]. International Journal of Fatigue, 2009, 31(5): 952-961.
  • 10Zhu S P, Sun R, Huang H Z, et al. A new life prediction model based on ductility exhaustion theory for high temperature low cycle fatigue of turbine disk alloys//Proceedings of the ASME International Design Engineering Technical Conference. 2010.

二级参考文献9

共引文献51

同被引文献78

引证文献9

二级引证文献31

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部