期刊文献+

基于ECRL电路的两种改进绝热电路 被引量:1

Two improved adiabatic circuits based on ECRL
下载PDF
导出
摘要 传统绝热电路ECRL(Efficient Charge Recovery Logic)有两个缺点,其一是电路节点能量不能被完全回收;其二是电路的功耗随着负载电容的增大而增加。对此提出了两种改进型电路,一种是构造一条能量回收通路,使得未回收的能量通过构造的通路得到回收,用有限的绝热损失实现非绝热能量的完全回收;另一种是通过自举操作使得电路的非绝热过程仅涉及电容较小的驱动MOSFET管,与负载电容不直接相关。采用0.5μm BSIM3v3模型工艺的HSPICE对上述电路进行仿真,结果表明,与ECRL电路相比,两种改进型电路的功耗均有一定程度的降低。 Traditional ECRL(Efficient Charge Recovery Logic) adiabatic circuit has two disadvantages. One is that the energy of the circuit nodes can not be completely recycled; The other is that the power consumption is rapidly raised with the increase of load capacitance. Two improved circuits overcoming two disadvantages are proposed. One is to construct an energy recovery path, through which the energy un-recycled is recovered to achieve full recovery with limited non-adiabatic adiabatic energy loss. The other is to make the non-adiabatic process of the circuit associate with only the smaller MOSFET gate capacitance instead of the load capacitance by a bootstrap operation. The HSPCIE simulation with 0.5 I, Lm BSIM3v3 model technology proves that the power consumption of the two improved circuit has a certain degree of reduction compared to ECRL circuit.
作者 张丽 郭宝增
出处 《微型机与应用》 2011年第16期19-21,24,共4页 Microcomputer & Its Applications
基金 河北省教育厅科研基金项目支持(2009310)
关键词 ECRL 能量回收 绝热电路 ECRL energy recovery adiabatic circuit
  • 相关文献

参考文献6

  • 1DAVARI B. CMOS scaling for high performance and low power the next ten years[J]. Proe.of the IEEE, 1995,83 (4):595-606.
  • 2YO Y M,DENG K J. An efficient charge recovery logic circuit[J]. IEEE journal of solid-state circuits, 1996,3i (4): 514-522.
  • 3罗家俊,李晓民,仇玉林,陈潮枢.一种新型的绝热低功耗逻辑电路[J].固体电子学研究与进展,2003,23(2):225-228. 被引量:3
  • 4NG K W, LAU K T, Improved PAL-2N logic with complementary pass-transistor logic evaluation tree[J]. Mciroelectronics Journal, 2000,31 (1) :55- 59.
  • 5WATKINS B G. A low-power multiphase circuit technique [J]. IEEE journal of solid-state circuits, 1967,2(4):213- 220.
  • 6杨骞,周润德.采用自举技术的不完全绝热电路[J].清华大学学报(自然科学版),2004,44(7):981-983. 被引量:1

二级参考文献11

  • 1Athas W, Svensson L, Koller J, er al. Low power digital systems based on adiabatic-switching principles [J]. IEEE Trans on VLSI Systems, 1994, 2(4): 398-407.
  • 2Moon Yong, Jeong Deog-Kyoon. An efficient charge recovery logic circuit [J]. IEEE J Solid-State Circuits, 1996, 31(4): 514-522.
  • 3Oklobd zija V G, Maksimovic D, Lin F. Pass-transistor adiabatic logic using single power-clock supply [J]. IEEE Trans on Circuits and Systems-II: Analog and Digital Signal Processing, 1997, 44(10): 842-846.
  • 4Liu F, Lau K T. Pass-transistor adiabatic logic with NMOS pull-down configuration [J]. Electronics Letters, 1998, 34(8): 739-741.
  • 5Athas W, Svensson L, Tzartzanis N. A resonant signal driver for two-phase, almost-non-overlapping clocks [A]. 1996 IEEE Int Symp on Circuits and Systems [C]. New York: IEEE Press, 1996. 129-132.
  • 6Lim J, Kim D-G, Chae S-I. Reduction in energy consumption by bootstrapped nMOS switches in reversible adiabatic CMOS circuits [J]. IEE Proc: Circuits, Devices & Systems, 1999, 146(6): 327-333.
  • 7Kramer A, Denker J S, Avery S C, et al. Adiabatic computing with the 2N-2N2D logic family. IEEE Symp VLSI Circuits/Dig Tech Papers, 1994 : 25- 26.
  • 8Dickinson A G, Denker J S. Adiabatic dynamic logic.IEEE J Solid-State Circuits, 1995 ; 30 (3) :311 - 314.
  • 9Kramer A, Denker J S. 2^nd order adiabatic computation with 2N-2P and 2N-2N2P logic circuits. Proc Int Syrupon Low Power Design, Dana Point, 1995 : 191-196.
  • 10Moon Yong. An efficient charge recovery logic circuit.IEEE of Solid-State Circuits, 1996 ; 31 (4) : 514- 522.

共引文献2

同被引文献10

  • 1MARKOVIC D,WANG C C,ALARCON L P,et al.Ultralow-power design in near-threshold region [J].Proceedings of the IEEE,2010,98(2):237-252.
  • 2PAUL B C,AGARWAL A,ROY K.Low-power design techniques for scaled technologies [J].Integration,the VLSI Journal,2006,39(2):64-89.
  • 3MOON Y,JEONG D K.An efficient charge recovery logic circuit[J].IEEE Journal of Solid-state Circuits,1996,31(4):514-522.
  • 4SHI J Y,LI H Y,XU Y B.Design of the approved low power energy recovery logic circuit[J].Advanced Materials Research,2013,662:851-855.DOI:10.4028/www.scientific.net/AMR.662.851.
  • 5YEO Y C,LU Qiang.Direct tunneling gate leakage current in transistors with ultrathin silicon nitride gate dielectric[J].IEEE Electron Device Letters,2000,21(11):540-542.
  • 6HU Jianping,LIU Binbin.Designs of 2P-2P 2N energy recovery logic circuits [J].Research Journal of Applied Sciences,Engineering and Technology,2013,5(21):4977-4982.
  • 7Nanoscale Integration and Modeling Gralp at ASU Predictive Technology Model(PTM)[S/OL].(2001-5-31)[2014-6-20].http://www.ptm.asu.edu.
  • 8INUKAI T,TAKAMIYA M,NOSE K,et al.Boosted gate MOS(BGMOS):leakage-free circuits by device/circuit cooperation scheme[J].Integrated Circuits and Devices,2000,100(270):1-8.
  • 9GHANI T,MISTRY K,PACKAN S,et al.Scaling challenges and device design requirements for high performance sub-50nm gate length planar CMOS transistors[Z].Symposium on VLSI Technology,Hawaii:2000.
  • 10郭宝增,张亚朋.基于改进型ECRL电路的触发器设计[J].微型机与应用,2010,29(2):23-26. 被引量:1

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部