期刊文献+

航空成像光谱的蚀变信息提取技术 被引量:10

Extraction of Alteration Information Based on Airborne Hyperspectral Image
原文传递
导出
摘要 根据成像光谱仪CASI/SASI的影像特点,制定了高光谱影像的处理方法流程,介绍了各步骤的内容和需要注意的事项。阐述了噪声和坏波段去除、大气校正的过程,并提出了一些经验性的处理方法。在成像光谱岩石蚀变提取算法中,根据经验对已有方法进行了改进;在基于特定算法的矿物填图方法中,依据柯坪地区CASI影像中富含二价铁的辉绿岩脉的光谱特征,提出了富二价铁岩石提取算法。经过实地验证,富二价铁岩石的提取对铀矿勘探具有较好的指导作用。通过提取的信息结果与已经矿区或矿点的空间叠加分析发现,富二价铁岩石空间分布与铀异常点分布有很强的相关性。根据富二价铁与铀矿的空间分布规律,提出了断裂+富二价铁岩石的成矿模式。红色砂岩提供铀源,岩脉提取铀成为存储容器。富二价铁岩石提供铀沉淀催化剂的作用,且线性的富二价铁岩石分布区域对成矿更有利。通过富二价铁岩石的提取,在柯坪南部地区新发现了3条铀异常带。 Based on CASI/SASI images" characteristics, lhe hyperspectral images processing procedure is established. The contents of each step and things, which should be paid attention to, are introduced. Before the extraction of alteration inforniation, the data pre- processing should be well completed, the type of alterations in the study area should be determined, and the corresponding spectral database should be built. Some empirical approaches are made for those processing. Based on the experience, the various methods are described in detail and some algorithms are improved. Based on the spectrum characteristics of the rock containing ferrous iron-rich on the CASI images of Keping area, the ferrous iron-rich rock extraction algorithms are proposed. The field work has proved that the alteration information extracted is correct, and the extraction of ferrous iron-rich is a good guidance for uranium exploration. The rule determining the mineralization model in the study area is found through the alteration information extraction and spatial superposition analysis on mine points or mineral area. The special distribution of ferrous iron-rich rock has a strong correlation with the uranium abnormal. In the study area, the red sand rock is the passage for uranium, the dyke is the storage for uranium, and the ferrous iron-rich rock makes uranium settle around the dyke. Three new dykes of uranium abnormal are found in south part of Keping using the method.
出处 《科技导报》 CAS CSCD 北大核心 2011年第23期57-61,共5页 Science & Technology Review
基金 核工业北京地质研究院遥感信息与图像分析技术重点实验室生产项目
关键词 蚀变 高光谱 CASI/SASI 二价铁 alteration hyperspectral CASI/SASI Fe^2+ uranium
  • 相关文献

参考文献5

  • 1Boardman J W, Kruse K A, Green R O. Mapping target signatures via partial unmixing of AVIRIS data[C]. Summaries of the Fifth Annual JPL Airborne Geoscience Workshop, Pasadena, CA, Jan 23-26, 1995.
  • 2甘甫平,王润生,杨苏明.西藏Hyperion数据蚀变矿物识别初步研究[J].国土资源遥感,2002,14(4):44-50. 被引量:49
  • 3田淑芳. 基于航天高光谱遥感的东胜地区矿物填图研究[D]. 北京: 中国地质大学, 2008.
  • 4Mustard J F. Chemical analysis of actinolite from reflectance spectra[J]. American Mineralogist, 1992, 77(3-4): 345-358.
  • 5杨国鹏,余旭初,周欣,张鹏强.基于相关向量机的高光谱影像分类研究[J].测绘学报,2010,39(6):572-578. 被引量:13

二级参考文献26

  • 1杨田鹏.基于核方法的高光潜影像分类与特征提取[D].郑州:信息工程大学.2007.
  • 2VAPNIK V N. The Nature of Statistical Learning Theory[M]. New York.. Springer, 1995.
  • 3SHAWE TSYI.OR J, CRISTIANINI N. Kernel Methods for Pattern Analysis[M]. London: Cambridge University Press, 2004:47 -82.
  • 4BISHOP C M, TIPPING M E. Variational Relevance Vector Machines[C] // Proceedings of the 16th Conference on Uncer tainty in Artificial Intelligence. San Francisco: Morgan Kaufmann, 2000:46-53.
  • 5TIPPING M E, FAUL A. Fast Marginal Likelihood Maximiza tion for Sparse Bayesian Models[C]//Proceedings of Ninth In ternational Workshop on Artificial Intelligence and Statistics. Key West: [s. n. ], 2003.
  • 6THAYANANTHAN A. Template based Pose Estimation and Tracking of 3D Hand Motion[D]. Cambridge: University of Cambridge, 2005.
  • 7SILVA C, RIBEIRO B. Scaling Text Classification with Rele vance Vector Machines[C]//IEEE International Conference on Systems, Man and Cybernetics. Taipei : IEEE, 2006 : 4186- 4191.
  • 8DEMIR B, ERTURK S. Hyperspectral Image Classification Using Relevance Vector Machines[J]. IEEE Geoscience and Remote Sensing Letters, 2007, 4(4): 586- 590.
  • 9NIKOLAEV N, TINO P. Sequential Relevance Vector Machine Learning from Time Series[C]//Proceedings of 2005 IEEE International Joint Conference on Neural Networks. [S. l. ]: IEEE, 2005:1308 -1313.
  • 10TIPPING M E. Sparse Bayesian Learning and the Relevance Vector Maehine[J]. Journal of Machine Learning Research, 2001,1:211- 244.

共引文献60

同被引文献81

引证文献10

二级引证文献57

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部