期刊文献+

基于GARCH-EVT-Copula的社保基金投资组合风险测度研究 被引量:2

On the Risk Measure of the Social Security Fund Investment Portfolio based on GARCH-EVT-Copula
下载PDF
导出
摘要 社保基金是社会保障事业健康发展的物质基础,安全性是其投资的首要原则。文章基于GARCH-EVT-Copula方法测度了社保基金投资组合的VaR。首先,基于GARCH、EVT对投资组合中各金融资产收益的边缘分布建模,然后,采用极大似然估计法和Bootstrap方法估计尾部的分布函数,接着,基于Copula方法研究组合中金融资产间的相关结构,最后,运用Monte Carlo方法测度投资组合的VaR。Kupiec检验表明,基于GARCH-EVT-Copula模型测度社保基金投资组合的风险是合适的。 Social security fund is the material base for healthy development of social security business, which gets the security to be the first principle for investment. This paper measured VaR of portfolio in social security fund with the GARCH-EVT-Copula approach. Firstly, distribution modeling by using GARCH and EVT based on the brink of all financial assets in portfolio, then figured out the tails on the distribution functions by using Maximum Likehood Estimation (MLE) and Bootstrap, and then research- ing on relational structure in financial assets portfolio based on Copula approach, finally the measure- ment was using the Monte Carlo method for VaR of portfolio. The inspection of Kupiec showed that GARCH-EVT-Copula model is suitable for measurement of risks of social security fund portfolio.
出处 《金融理论与实践》 北大核心 2011年第8期8-12,共5页 Financial Theory and Practice
基金 国家自然科学基金项目(70671025/G0115)
关键词 GARCH 极值理论 Coupla 社保基金 投资组合 自助法 Generalized Auto Regressive Conditional Heteroskedasticity (Generalized ARCH) Ex- treme Value Theory Copula Approach Social Security Fund Portfolio Bootstrap
  • 相关文献

参考文献12

二级参考文献59

共引文献124

同被引文献39

  • 1柏满迎,孙禄杰.三种Copula-VaR计算方法与传统VaR方法的比较[J].数量经济技术经济研究,2007,24(2):154-160. 被引量:41
  • 2李秀敏,史道济.金融市场组合风险的相关性研究[J].系统工程理论与实践,2007,27(2):112-117. 被引量:34
  • 3郑振龙 王保合.基于极值理论的风险价值度量.金融学季刊,2005,(1).
  • 4Aas K, Berg D. Models for construction of multivariate dependence-a comparison study [J]. The European Journal of Finance, 2009, 15..639-659.
  • 5Li D X. On default correlation: A copula function approach [J]. Journal of Fixed Income,2000, 9 (4): 43-54.
  • 6Salmon F. Recipe for disaster: The formula that killed Wall Street [J]. Wired Magazine, 2009 (2) : 3- 17.
  • 7Morgan J P. RiskMetrics-technical document [M]. New York: Morgan Guaranty Trust Company, 1996.
  • 8Hansen B E. Autoregressive conditional density estimation [J]. International Economic Review, 1994, 35:705-730.
  • 9Daniellson J, de Vries C G. Tail index and quantile estimation with very high frequency data [J]. Journal of Empirical Finance, 1997(4) :241-257.
  • 10McNeil A J, Frey R. Estimation of tail-related risk measures for heteroseedastie financial time series: an extreme value approach [J]. Journal of Empirical Finance, 2000(7) :271-300.

引证文献2

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部