摘要
针对三维测量数据和自由曲面模型之间的位姿配准问题,研究了先粗后精的两步配准方法。在初始配准的基础上,融合最小二乘法和最小条件原则构造目标函数,应用微分进化算法对目标函数寻优,找出三维测量数据与理论曲面的最佳匹配矩阵以实现最优配准。实验结果表明,该方法与遗传算法相比具有运算速度快和精度高等特点,能较好的解决复杂曲面类零件测量数据的位姿配准问题,并且可用于逆向工程中曲面误差的分析及修正。
Aim at the question of pose alignment between 3D measured data and the free-form surface model,a two-step pose alignment method including first rough matching and then accurate matching has been proposed.On the basis of initial pose alignment,the objective function was constructed by least-square method and minimum condition principle,and then the Differential Evolution(DE) algorithm is applied to calculate the best matching matrix and find out the perfect pose between measured data and the free-form surface.The experimental results show that the pose alignment algorithm proposed in this paper possesses higher accuracy and faster convergence rate compared to the Genetic algorithm method.Not only it can be used in solving the problem of surface alignment,but also in analyzing and amending of the curved surface error in reverse engineering.
出处
《机械设计与研究》
CSCD
北大核心
2011年第4期54-56,87,共4页
Machine Design And Research
基金
广东省科技攻关计划资助项目(2009B010900048
2010A080401003)
高校博士点专项科研基金资助项目(20094420110001)
广东省教育部资助产学研结合项目(2010B090400458)
关键词
三维测量数据
位姿配准
微分进化算法
3D measured data
pose alignment
differential evolution algorithm