摘要
在引入多尺度小波分析的基础上,通过对紊流图像进行多尺度小波分解,建立小波系数矩阵二阶矩以标识对应部分的图像清晰度,通过特定选择机制进行图像重建,最终获得清晰的图像融合结果。选取紊流图像特征建立参数数据组,构建灰色评价数学模型,计算各图像特征之间的灰色关联度,得出了研究结论与参考建议。该实验使紊流图像的细节和缺陷等能够得到很好的展现,为图像融合关联度的监控和调试提供了理论基础和技术准备。
On the basis of introducing the technology of multi-scale wavelet analyze,turbulence images are wavelet decomposed,quadratic moment of corresponding image's wavelet coefficients is used to identify the definition of image.Thus the required image definition is gotten by wavelet reverse analyzing and reconstructing of image with a specific selecting criteria.After selecting different image characteristics and establishing its parameter-array,a mathematical model of gray evaluating system is structured.After calculating the gray relational degree of the image characteristics,thus the research conclusions and referential suggestions are reached.It provides a clear turbulence image which identifies its detail and defect effectively,the theoretical foundation and technical preparation can be provided for the monitoring and adjusting of image fusion's relational degree.
出处
《组合机床与自动化加工技术》
北大核心
2011年第8期1-4,8,共5页
Modular Machine Tool & Automatic Manufacturing Technique
基金
国家自然科学基金项目(50875059)
国家自然科学基金项目(50875052)
广东省高校优秀青年创新人才培育项目(LYM09110)
广州市属高校科研项目(10A068)
广州大学新苗计划(LZW2-2091)
关键词
二阶矩
小波分解
图像融合
灰色关联度
评价
quadratic moment
wavelet decomposition
image fusion
gray relational degree
evaluation