期刊文献+

采用约束蚁群优化的贝叶斯网结构学习算法 被引量:2

A Constrained Ant Colony Optimization Algorithm for Learning Bayesian Networks
下载PDF
导出
摘要 针对贝叶斯网络结构学习问题,提出了一种约束蚁群优化算法.该算法根据贝叶斯得分的局部一致性原理设计了一种增边规则,并且将此规则引入蚁群算法的框架中,从而实现了在搜索过程中利用启发式信息动态缩减搜索空间、同时减少运行时间的目的.此外,还从理论上证明了增边规则的正确性,而且从实验角度讨论了约束蚁群优化算法的参数敏感性.实验结果表明,在解决较大规模的贝叶斯网络结构学习问题时,约束蚁群优化算法在保证求解精度的条件下比蚁群优化算法的运行时间减少40%以上. A novel constrained ant colony optimization algorithm is proposed for learning Bayesian networks. An add-edge-rule is designed in the proposed algorithm based on the locally consistent scoring criterion of BDEu metric. The add-edge-rule is embedded into the frame of ant colony optimization so that the heuristic information can be dynamically used to restrict the candidate evaluations during the search process and the running time of the new algorithm can be reduced. In addition, the correctness of the add-edge-rule is proved in theory and the parameter sensitivity of the constrained ant colony optimization is analyzed in experiments. Empirical tests show that without loss of results accuracy, the convergence speed of the proposed algorithm is at least 40% faster than that of the ant colony optimization algorithm for large-scale learning Bayesian net- works.
出处 《西安交通大学学报》 EI CAS CSCD 北大核心 2011年第8期54-61,共8页 Journal of Xi'an Jiaotong University
基金 国家自然科学基金资助项目(70971020)
关键词 贝叶斯网络 约束蚁群优化算法 增边规则 Bayesian networks constrained ant colony optimization algorithm add-edge-rule
  • 相关文献

参考文献14

  • 1HECKERMAN D. Bayesian networks for data mining [J]. Data Mining and Knowledge Discovery, 1997, 1(1) : 79-119.
  • 2CHENG J, GREINER R, KELLY J, et al. Learning Bayesian networks from data: an information-theory based approach[J]. Artificial Intelligence, 2002, 137 (1/2) : 43-90.
  • 3DE CAMPOS L M, FERN N J M, MEZ G J A, et al. Ant colony optimization for learning Bayesian networks [J]. International Journal of Approximate Reasoning, 2002, 31(3) : 291-311.
  • 4TSAMARDINOS I, BROWN L E, ALIFERIS C F.The max-min hill-climbing Bayesian network structure learning algorithm[J]. Machine Learning, 2006, 65 (1) : 31-78.
  • 5JI Jun-Zhong ZHANG Hong-Xun HU Ren-Bing LIU Chun-Nian.A Bayesian Network Learning Algorithm Based on Independence Test and Ant Colony Optimization[J].自动化学报,2009,35(3):281-288. 被引量:20
  • 6CHICKERING D M. Optimal structure identification with greedy search[J]. The Journal of Machine Learning Research, 2003, 3: 554.
  • 7DORIGO M, MANIEZZO V, COLORNI A. Ant system: optimization by a colony of cooperating agents [J]. Systems, Man, and Cybernetics: Part B Cybernetics, 2002, 26(1): 29-41.
  • 8张云,冯博琴,麻首强,刘连梦.蚁群-遗传融合的文本聚类算法[J].西安交通大学学报,2007,41(10):1146-1150. 被引量:15
  • 9任志刚,冯祖仁,柯良军.蚁群优化属性约简算法[J].西安交通大学学报,2008,42(4):440-444. 被引量:9
  • 10郑巍,刘三阳,寇晓丽.一种面向传感器网络的蚁群优化路径恢复算法[J].西安交通大学学报,2010,44(1):83-86. 被引量:4

二级参考文献38

共引文献54

同被引文献33

  • 1李德毅,孟海军,史雪梅.隶属云和隶属云发生器[J].计算机研究与发展,1995,32(6):15-20. 被引量:1250
  • 2戴朝华,朱云芳,陈维荣.云自适应遗传算法[J].控制理论与应用,2007,24(4):646-650. 被引量:38
  • 3张云,冯博琴,麻首强,刘连梦.蚁群-遗传融合的文本聚类算法[J].西安交通大学学报,2007,41(10):1146-1150. 被引量:15
  • 4TENENGAUM J B, SILVA V D, LANGFORD J C. A global geometric framework for nonlinear dimension- ality reduction[J]. Science, 2000, 290(5500): 2319- 2323.
  • 5张选平,祝兴昌,马琮.一种基于边界识别的聚类算法[J].西安交通大学学报,2007,41(12):1387-1390. 被引量:5
  • 6HECKMAN D,WELLMAN M. Bayesian networks[J].CACM,1995,(3):27-30.
  • 7FRIDEMAN N,LINIAL M,NACHMAN I. Using Bayesian networks to analyze data[J].{H}Journal of Computational Biology,2007,(3):601-620.
  • 8CHICKERING D M,HECKERMAN D,MEEK C. Large-sample learning of Bayesian networks is NP-hard[J].{H}JOURNAL OF MACHINE LEARNING RESEARCH,2004,(5):1287-1330.
  • 9CHENG J,BELL D A,LIU W. An algorithm for Bayesian belief network construction from data[A].Lauderdale,Florida:[s.n.],1997.83-90.
  • 10CHOW C,LIU C. Approximation discrete probability distributions with dependence trees[J].{H}IEEE Transactions on Information Theory,1968,(3):462-467.

引证文献2

二级引证文献12

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部