摘要
针对已有神经网络方法采用示例决定标记从而导致多示例学习(MIL)中包结构信息丢失的问题,提出了一种新的RK_BP多示例学习方法.在示例空间,首先采用粗糙集对其进行属性约简;然后进行K均值聚类,利用聚类点构造新包空间;在新空间中,利用误差反向传播神经网络算法进行分类.在多个测试数据集上对算法进行测试,结果表明该算法可有效解决已有神经网络方法包结构信息丢失问题,明显提高分类性能.
Aiming at bag structure information loss problem caused by single instance deciding bag label in multiple instance learning (MIL), a new MIL algorithm named RK_BP is proposed. Firstly, rough set method is adopted to reduce the redundant information in the instance feature space, then K means algorithm is applied to cluster and build a new bag space, and finally back propagation algorithm is used to classify bags in the new space. Experiments on data sets show that this algorithm deals well with the multiple instance problems and provides better classification results.
出处
《西安交通大学学报》
EI
CAS
CSCD
北大核心
2011年第8期62-66,117,共6页
Journal of Xi'an Jiaotong University
基金
国家自然科学基金资助项目(60873094)
高等学校博士学科点专项科研基金资助项目(200806970014)
关键词
多示例学习
反向传播算法
粗糙集
K均值聚类
新空间
multiple instance learning
back propagation
rough set
K means clustering
newspace