期刊文献+

构建新包空间的多示例学习方法 被引量:1

Multiple Instance Learning Method Based on Building New Bag Space
下载PDF
导出
摘要 针对已有神经网络方法采用示例决定标记从而导致多示例学习(MIL)中包结构信息丢失的问题,提出了一种新的RK_BP多示例学习方法.在示例空间,首先采用粗糙集对其进行属性约简;然后进行K均值聚类,利用聚类点构造新包空间;在新空间中,利用误差反向传播神经网络算法进行分类.在多个测试数据集上对算法进行测试,结果表明该算法可有效解决已有神经网络方法包结构信息丢失问题,明显提高分类性能. Aiming at bag structure information loss problem caused by single instance deciding bag label in multiple instance learning (MIL), a new MIL algorithm named RK_BP is proposed. Firstly, rough set method is adopted to reduce the redundant information in the instance feature space, then K means algorithm is applied to cluster and build a new bag space, and finally back propagation algorithm is used to classify bags in the new space. Experiments on data sets show that this algorithm deals well with the multiple instance problems and provides better classification results.
出处 《西安交通大学学报》 EI CAS CSCD 北大核心 2011年第8期62-66,117,共6页 Journal of Xi'an Jiaotong University
基金 国家自然科学基金资助项目(60873094) 高等学校博士学科点专项科研基金资助项目(200806970014)
关键词 多示例学习 反向传播算法 粗糙集 K均值聚类 新空间 multiple instance learning back propagation rough set K means clustering newspace
  • 相关文献

参考文献17

  • 1DIETTERICH T G, LATHROP R H, LOZANO- PEREZ T. Solving the multiple instance problem with axis-parallel rectangles [J].Artificial Intelligence, 1997, 89(1/2) : 31-71.
  • 2MARON O, LOZANO-PEREZ T. Advances in neural information processing systems 10: a framework for multiple-instance learning [M]. Cambridge, MA, USA: MIT Press, 1998:570-576.
  • 3ZHANG Qi, GOLDMAN S A. Advances in neural Informarion processing systems 14: EM-DD: an improved multiple-instance learning technique [M]. Cambridge, MA, USA: MIT Press, 2002: 107:3-1080.
  • 4ANDREWS S, HOFMANN T, TSOCHANTARIDIS I. Multiple instance learning with generalized support vector machines [C]//Proceedings of the 18th National Conference on Artificial Intelligence. Edmonton, Canada: AAAI Press, 2002: 943-944.
  • 5GARTNER T, FLACH P A, KOWALCZYK A, et al. Multi-instance kernels [C] // Proceedings of the 19th International Conference on Machine Learning. San Francisco, CA, USA: Morgan Katffrnam Publishers Inc, 2002. 179-186.
  • 6WANG Huayan, YANG Qiang, ZHA Hongbin. Adaptive p-posterior mixture-model kernels for multiple instance learning [C]//Proceedings of the 25th International Conference on Machine Learning. Helsinki, Finland: ACM Press, 2008: 1136-1143.
  • 7ZHOU Zhihua, SUN Yuyin, LI Yufeng. Multi-instance learning by treating instances as non I. I. D. samples [C] // Proceedings of the 26th International Conference on Machine Learning. Quebec, Canada:[n. s.], 2009:1249-1256.
  • 8詹德川,周志华.基于流形学习的多示例回归算法[J].计算机学报,2006,29(11):1948-1955. 被引量:16
  • 9ZHOU Zhihua, ZHANG Minling. Neural networks for multi-instance learningEC]//Proceedings of the International Conference on Intelligent Information Technology. Beijing, China's People's Post and Telecommunications Publishing House, 2002: 455-459.
  • 10ZHANG Minling, ZHOU Zhihua. Adapting RBF neural networks to multi-instance learning [J]. Neural Processing Letters, 2006, 23 (1) : 1-26.

二级参考文献31

共引文献306

同被引文献5

  • 1Dietterich T G,Lathrop R H,Lozano-P'erez T.Solving the multiple instance problem with axisparallel rectangles[J].Artificial Intelligence,1997,89(1-2):31-71.
  • 2Auer P,Ortner R.A boosting approach to multiple instance learning[C] // In Machine Learning:ECML 2004,volume 3201 of Lecture Notes in Computer Science.Springer,2004.63-74.
  • 3Gary Doran,Soumya Ray,SMILe.Shuffled Multiple-Instance Learning[C] // Proceedings of the Twenty-Seventh AAAI Conference on Artificial Intelligence,2013.
  • 4Blockeel H,Page D,Srinivasan A.Multi-instance tree learning[C] // In Proceedings of the 22nd International Conference on Machine Learning,2005.57-64.
  • 5Zhou Z,Sun Y,Li Y.Multi-instance learning by treating instances as non-IID samples[C] // In Proceedings of the 26th International Conference on Machine Learning,2009.1249-1256.

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部