期刊文献+

一种基于差分进化的BP神经网络学习算法 被引量:1

A novel learning algorithm of BP neural network based on differential evolution
下载PDF
导出
摘要 提出了一种基于改进差分进化算法和BP神经网络的计算机网络流量预测方法。利用差分进化算法的全局寻优能力,快速地得到BP神经网络的权值和阈值;然后利用BP神经网络的非线性拟合能力获得高精度的网络流量预测结果。实验结果表明,此方法能在较短的时间内获得较高精度的预测结果,具有较好的应用价值。 A novel method based on improved differential evolution algorithm and BP neural networks for computer network traffic prediction was proposed.The weight values and threshold values of BP neural network were obtained speedy by using the global optimization ability of differential evolution algorithm,and then the good prediction accuracy of network traffic was achieved by using nonlinear fitting ability of BP neural network.The experiments results show that the proposed method can obtain good prediction accuracy of network traffic with low cost of time relatively,and has the advantages of good application value.
出处 《电子设计工程》 2011年第15期16-18,共3页 Electronic Design Engineering
关键词 差分进化 学习算法 BP神经网络 网站流量预测 differential evolution learning algorithm BP neural network website traffic prediction
  • 相关文献

参考文献7

  • 1Leland, Taqqu M S, Willinger W, et al. On the self-similar nature of ethemet traffic (extended version) [J]. IEEE Trans on Networking ,2009,32(3): 1-15.
  • 2Paxson V, Fbyd S. Wide-area traffic: the failure of Poisson. modeIing[J]. IEEE/ACM Transaction on Networking,2009, 32 (5):226-244.
  • 3高隽.人工神经网络原理及仿真实例[M].北京:机械工业出版社.2009.
  • 4Price K, Storn R, Lampinen J. Differential evolution: a practical approach to global optimization[M]. Berlin:Springer,2005.
  • 5MAYER D G,KINGHORN B P,ARCHER A A. Differential evolution:an easy and efficient evolutionary algorithm for model optimisation[J]. Agricultural Systems, 2004, 83 (5) : 315-328.
  • 6姚峰,杨卫东,张明,李仲德.改进自适应变空间差分进化算法[J].控制理论与应用,2010,27(1):32-38. 被引量:23
  • 7周艳平,顾幸生.差分进化算法研究进展[J].化工自动化及仪表,2007,34(3):1-6. 被引量:72

二级参考文献47

共引文献93

同被引文献1

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部