期刊文献+

基于DM642的KLT跟踪算法的实现及优化 被引量:4

Implementation and optimization of KLT tracking algorithm based on DM642
下载PDF
导出
摘要 Kanade-Lucas-Tomasi(KLT)算法是基于图像特征点的跟踪算法,由目标对象特征点提取,特征点跟踪两部分组成。本文首先阐述了KLT算法的基本原理,分析了影响算法执行速度的主要原因。分析表明KLT算法的操作主要集中在乘加运算和循环,图像卷积运算和循环占用的执行时间比较长。针对TMS320DM642 DSP的硬件平台特点,提出了算法优化的若干策略。通过配置编译环境,合理安排数据类型,消除存储器相关性,使用内联函数以及分解多层循环等方法,对算法的实现进行了优化。实验结果表明,优化后代码执行速度是优化前的3倍多。 KLT is a tracking algorithm based on image feature points,which is composed of two parts,namely the feature point extraction and the feature point tracking.In this paper,the basic principle of the KLT algorithm is proposed,and the main factors which influence the speed of the KLT algorithm are analyzed.It is found that the multiplication-addition and the loop operations cost the most processing time in the KLT algorithm.The image convolution operation and the implementation of loops take much more time.A serise strategies of the algorithm optimization are proposed considering the hardware platform of the TMS320DM642.The algorithm is implemented optimizely,by configing the compile environment,arranging the data types reasonably,eliminating the memory correlation,using the intrinsics and decompositing the number of loops.Experimental results show that the execution speed of the optimized code is three times faster than that without optimization.
出处 《激光与红外》 CAS CSCD 北大核心 2011年第8期936-940,共5页 Laser & Infrared
基金 江苏省自然科学基金(No.BK2008098)资助
关键词 DM642 KLT 运动跟踪 优化 图像处理 DM642 KLT motion tracking optimization image processing
  • 相关文献

参考文献10

  • 1Bruce D Lucas, Takeo Kanade. An iterative image registration technique with an application to stereo vision [ C]//7^th International Joint Conference on Artificial Intelligence, Vancouver, 1981,8 ( 24 - 28 ) : 674 - 679.
  • 2Jianbo Shi, Carlo Tomasi. Good features to track [ C ]// IEEE Conference on Computer Vision and Pattern Recognition, Seattle, 1994,1 ( 21 - 23 ) : 593 - 600.
  • 3Sudipta N Sinha ,Janmichael Frahm, Marc Pollefeys, et al. GPU-based video feature tracking and matching:TR 06 - 012 [ R]. University of North Carolina, USA ,2006.
  • 4Sudipta N Sinha. GPU_KLT:A GPU-based Implementation of the Kanade-Lucas-Tomasi Feature Tracker [ EB/OL ]. University of North Carolina : 10, August, 2008. http ://cs. unc. edu/- ssinha/Research/GPU KLT/.
  • 5Julius Fabian Ohmer, Nicholas J Redding. GPU-accelerated KLT tracking with monte-carlo-based feature reselection[ C]//Digital Image Computing:Techniques and Applications, Canberra,2008,12 ( 1 - 3 ) : 234 - 241.
  • 6Christopher Zach, David Gallup, Jan-Michael Frahm. Fast gain-adaptive KLT tracking on the GPU [ C ]//Computer Vision and Pattern Recognition Workshops, Anchorage, 2008,6(23 -28) :1 -7.
  • 7Stan Birchfield. KLT: An Implementation of the Kanade- Lucas-Tomasi Feature Tracker [ EB/OL]. Clemson University:30 August 2007. http://www, ees. clemson, edu/ stb/klt/.
  • 8S P lerodiaconou, N Dahnoun, L Q Xu. Implementation and optimisation of a video object segmentation algorithm on an embedded DSP platform [ C ]//The Institution of Engineering and Technology Conference on Crime and Security, London, 2006,6 ( 13 - 14) :432 - 437.
  • 9Texas Instruments Incorporated. TMS320DM642 Video/ Imaging Fixed Point Digital Signal Processor: SPRS200N [ R]. July,2002.
  • 10Texas Instruments Incorporated. TMS320C6000 Optinlizing Compiler v 6.1 :SPRU1870[ R]. May,2008.

同被引文献39

  • 1曹丹华,邹伟,吴裕斌.基于背景图像差分的运动人体检测[J].光电工程,2007,34(6):107-111. 被引量:36
  • 2BRADSKIG,KAEBLERA.学习OpenCV[M].于仕琪,刘瑞琪,译.北京:清华大学出版社,2009.
  • 3Hunter I. Overview of embedded DSP design. Robert S, Stephan W, eds. Proc. of the 17th European Signal Processing Conference. 2009: 475-479.
  • 4Chang CY. Efficient active noise controller using a fixed- point DSE Signal Processing, 2009,89(5):843-850.
  • 5Tomasi C, Kanade T. Detection and tracking of point features School of Computer Science, Carnegie Mellon Univ., 1991.
  • 6Patel CI, Patel R. Counting Cars in Traffic Using Cascade Haar with KLE International Journal of Computer & Electrical Engineering, 2013, 5 (4).
  • 7Fradi H, Eiselein V, Keller I, et al. Crowd context-dependent privacy protection filters. 2013 18th International Conference on Digital Signal Processing (D SP). IEEE, 2013: 1-6.
  • 8Xu T, Ming D, Xiao L, et al. Stitching algorithm of sequence image based on modified KLT tracker. 2012 Fifth International Symposium on Computational Intelligence and Design (ISCID). IEEE, 2012, 2: 46-49.
  • 9Birchfield S.KIt: an implementation of the kanade-lucas- tomasi feature tracker. [2007-10-17]. http://www.ces, clemson. edu/~stb/klt/.
  • 10Sinha SN, Frahm JM, Pollefeys M, et al. Feature tracking and matching in video using programmable graphics hardware. Machine Vision and Applications, 2011, 22(1): 207-217.

引证文献4

二级引证文献11

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部