期刊文献+

基于小波预处理和贝叶斯分类器的P300识别算法 被引量:5

P300 Detection Algorithm Based on Wavelet Preprocessing and Bayesian Classification
下载PDF
导出
摘要 提出了一种高效的诱发电位P300成分识别算法用于脑计算机接口。采用小波分解与重构法去噪,根据P300特征决定小波基函数和分解层数,抽取出最明显的特征成分,结合基于证据框架的贝叶斯回归学习方法,获得对应类别概率进行分类决策。数据来源于2004 BCI Competition中的dataset P300字符拼写实验,交叉验证的结果表明,滤波方法有效,特征提取和分类算法计算复杂度低,获得了比较高的分类精度,平均精度最高为90%。 Effective algorithm for P300 detection is presented to implement brain computer interface. Firstly, wavelet decomposition and reconstruction are applied to remove noise, wavelet basis function and decomposition level are chosen by P300 character, and feature component is extracted distinctly. Secondly, it obtains the corresponding classification probability and implements classification discriminant with Bayesian regression learning algorithm on evidence framework. Data are from P300 speller paradigm in dataset Ⅱ of 2004 BCI Competition Ⅲ. Cross validation results indicate that the filtering method is effective, the computation complexity of feature extraction and classification is low, and better classification precision is ob- tained for average 90%.
出处 《数据采集与处理》 CSCD 北大核心 2011年第4期420-424,共5页 Journal of Data Acquisition and Processing
基金 上海高校选拔培养优秀青年教师科研专项基金(5108508001)资助项目
关键词 脑计算机接口 诱发电位 小波变换 贝叶斯线性判别分析 brain computer discriminant ana nterface evoked potential wavelet transform Bayesian linear ysis
  • 相关文献

参考文献11

  • 1Selim A E, Wahed M A, Kadah Y M. Machine learning methodologies in brain-computer interface systems[C]//Proceedings of the 4th Cairo Interna- tional Biomedical Engineering Conference. Cairo: IEEE Press, 2008 : 1-5.
  • 2Rivet B, Souloumiae A, Attina V, et al. xDAWN al- gorithm to enhance evoked potentials:application to brain-computer interface[J]. IEEE Transactions on Biomedical Engineering, 2009,56 (8) : 2035-2043.
  • 3Hoffmann U, Yazdani A,Vesin J M, et al. Bayesian feature selection applied in P300 brain-computer in- terface[C]//Proceedings of the 16th European Sig- nal Processing Conference. Lausanne: Wiley Press, 2008:25-29.
  • 4尧德中,刘铁军,雷旭,杨平,徐鹏,张杨松.基于脑电的脑-机接口:关键技术和应用前景[J].电子科技大学学报,2009,38(5):550-554. 被引量:45
  • 5Lei Xu, Yang Ping, Yao Dezhong. An empirical Bayesian framework for brain computer interfaces [J]. IEEE Transactions on Neural Systems and Re- habilitation Engineering, 2009,17 (6):521-529.
  • 6Hoffmann U, Vesin J M, Ebrahimi T, el al. An effi- cient P300-based brain-computer interface for dis- abled subjects[J]. Journal of Neuroscience Methods, 2008,167(1) : 115-125.
  • 7Selim A E, Wahed M A, Kadah Y M. Machine learning methodologies in P300 speller brain-com- puter interface systems[C]//Proceedings of the 24th Nation Radio Science Conference. Cairo: IEEE Press, 2009 : 17-19.
  • 8Farwell L A, Donchin E. Talking off the top of your head:toward a mental prosthesis utilizing event-re- lated brain potentials[J]. Electroencephalography &Clinical Neurophysiology, 1988,70(6) : 510-523.
  • 9Donchin E, Spencer K M, Wijensinghe R. The men- tal prosthesis: assessing the speed of a P300-based brain-computer interface[J]. IEEE Transactions on Rehabilitation Engineering, 2000,8 (2) : 174-179.
  • 10Benjamin Blankertz. BCI Competition III[EB/OL]. http,//www, bbei. de/competition/ill/index, html, 2004-12-12/2009-11-04.

二级参考文献17

  • 1Wolpaw JR, Birbaumer N, McFarland DJ, et al. Brain-computer interfaces for communication and control [ J ]. Clinical Neurophysiology, 2002, 113 (6) : 767 - 791.
  • 2Lebedev MA, Nicolelis MAL. Brain-machlne interfaces: past, present and future [ J ]. Trends in Neuroscienees, 2006, 29 (9) : 536 - 546.
  • 3Farwell LA, Donchin E. Talking off the top of your head : Toward a mental prothesis utilizing event-related brain potentials [ J ]. Electroenceph Clin Neurophysiol, 1988, 70 : 510 - 523.
  • 4Burges CJC. A tutorial on Support Vector Machines for pattern recognition [J]. Data Mining and Knowledge Discovery, 1998, 2 (2) :121 - 167.
  • 5Kaper M, Meinicke P, Grossekathoefer U, et al. BCI competition 2003 - Data set IIb: Support vector machines for the P300 speller paradigm [J]. IEEE Transactions on Biomedical Engineering, 2004, 51(6) : 1073 - 1076.
  • 6Rakotomamonjy A, Guigue V. BCI Competition Ⅲ: Dataset Ⅱ- ensemble of SVMs for BCI P300 speller [J]. IEEE Transactions on Biomedical Engineering, 2008, 55(3):1147- 1154.
  • 7Krusienski DJ, Sellers EW, McFarland DJ, et al. Toward enhanced P300 speller performance [ J ]. Journal of Neuroscience Methods, 2008, 167(1) : 15 - 21.
  • 8Ma Zhongwei, Gao Xiaorong, Gao Shangkai. Enhanced P300-based cursor movement control [ J ]. Lecture Notes in Artifical Intelligence, 2007, 4565 : 120 - 126.
  • 9Serby H, Yom-Tov E, Inbar GF. An improved P300-based braincomputer interface [J]. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2005, 13( 1 ) : 89 - 98.
  • 10Sellers EW, Krusienski D J, McFarland D J, et al. A P300 eventrelated potential brain-computer interface (BCI): The effects of matrix size and inter stimulus interval on performance [ J ]. Biological Psychology, 2006, 73(3) :242 - 252.

共引文献49

同被引文献55

  • 1赵世奇,张宇,刘挺,陈毅恒,黄永光,李生.基于类别特征域的文本分类特征选择方法[J].中文信息学报,2005,19(6):21-27. 被引量:21
  • 2盛骤,谢式千,潘乘毅.概率论与数理统计[M].北京:高等教育出版社,2010.
  • 3MitchellTM著 曾华军 张银奎译.机器学习[M].北京:机械工业出版社,2003..
  • 4姚文俊.自相关法和Burg法在AR模型功率谱估计中的仿真研究[J].计算机与数字工程,2007,35(10):32-34. 被引量:19
  • 5Urkowitz H. Energy detection of unknown determin- istic signals [J]. Proceeding of IEEE, 1967,55 (4) : 523-53.
  • 6Huseyin A. Cognitive radios, so[tware defined ra- dios, and adaptive wireless systems[M]. Xilan:Xi'an Jiaotong University Press,2010.
  • 7Hur Y, Park W, Lee W, et al. A cognitive radio (CR) system employing a dual-stage spectrum sens- ing technique: a multi-resolution spectum sensing (MRSS)and a temporal signature detection technique [C]//Global Telecommunications Conference. IS. l. ]:IEEE, 2006.
  • 8郭彩丽,冯春燕.认知无线电网络技术及应用[M].北京:北京电子工业出版社,2010.
  • 9Guo Haiyou, Hu Honglin. Yang Yang. Cyclosta tionary signatures in OFDM-based cognitive radios diversity[C]//ICC' 09. IEEE International Confer- ence on Communication. USA: IEEE, 2009:1-6.
  • 10Garner W A. Exploitation of spectral redundancy in Cyclostationay signals[J]. IEEE Signal Process Mag- azine,1991,8 (2)14-36.

引证文献5

二级引证文献53

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部