期刊文献+

极端条件下^6Li2O的热力学性能与电子结构 被引量:1

Thermodynamic properties and electronic structuresof ^6Li2O under extreme condition
下载PDF
导出
摘要 采用密度泛函理论与准谐振德拜模型研究了面心立方相的6Li2O在极端条件下的热力学性质与电子结构。结果表明:6Li2O的热膨胀系数在任何温度下都随压强增加明显降低,但仅当压强较低(低于40GPa)时,温度对6Li2O的热膨胀系数的影响才明显;O原子半径随压强增大而迅速降低,而随温度的变化并不明显;在低压条件下(低于40 GPa),带隙随温度的升高缓慢降低;而在高压条件下(高于40 GPa),温度对带隙宽度的影响几乎可以忽略;无论在什么温度条件下,带隙宽度均随压强的增大而迅速增加。 Thermodynamic properties and electronic structure of surface heart cubic phase fcc-6Li2O is studied by DFT and quasi-harmonic Debye model.Thermal expansion coefficient of 6Li2O reduces obviously with increased pressure under any temperature.Under low pressure(less than 40 GPa),temperature can cause distinct variety of thermal expansion.Radius of O atom decreases rapidly with pressure,but change caused by temperature is obscure.Under lower pressure(less than 40 GPa),band gap reduces just a little with temperature.Whereas,changes caused by temperature will almost be ignored under high pressure(more than 40 GPa).With raising of pressure,transition of electrons in valence band to high level will produce increasing of band gap.
出处 《强激光与粒子束》 EI CAS CSCD 北大核心 2011年第7期1959-1964,共6页 High Power Laser and Particle Beams
关键词 6Li2O 热力学性质 热容 膨胀系数 分波电子态密度 能带 6Li2O thermodynamic property heat capacity thermal expansion coefficient partial density of state energy band
  • 相关文献

参考文献27

  • 1Oishi Y, Kamel Y, Akiyama M, et al. Self diffusion coefficient of lithium in lithiumoxide[J]. J NuclMater, 1979, 87(2/3) :341-344.
  • 2Lang B E, Donaldson M H, Woodfield B F, et al. Specific heat measurements of TiB2 and ^6LiF from 0.5 to 30 K[J]. J Nucg Mater, 2005, 347(1/2):125- 133.
  • 3Demontis P, LeSar R, Klein M L. New high pressure phases of ice[J]. PhysRev Lett, 1988, 60(22) :2284 2287.
  • 4DeruontisP, Klein M I., l.eSar R. High density structures and phase transition in an ionic modelof H2Oice[J]. PhysReruB, 1989, 40(4) 2716 2718.
  • 5Goncharov A F, Struzhkin V V, Somayazulu M S, et al. Compression of ice 210 gigapascals: infrared evidence for a symmetric hydrogen- bonded phase[J].Science, 1996, 273(5272):218- 220.
  • 6Loubeyre P. LeToullec R, Wolanin E, et ah Modulated phases and proton centring in ice observed by X ray diffraction up to 170 GPa[J]. Nature, 1999, 397:503- 506.
  • 7Cavazzoni C, Chiarotti G; L, Scandolo S, et al. Superionic and metallic states of water and ammonia at giant planet conditions[J]. Science, 1999, 283(5398):44-46.
  • 8Hull S, Farley T W D, Hayes W, et al. The elastic properties of lithium oxide and their variation with temperature[J]. J Nucl Mater, 1988, 160 (1/2):125 -134.
  • 9Liu Y Y, Billone M C, Fischer A K, et al. Clemmer, solid tritium breeder materials-Li2O and LiAlO2 : a data base review[J]. Fusion Technol, 1985, 8(2):1970.
  • 10Blanco M A, Francisco E, Luana V. GIBBS: isothermal-isobaric thermodynamics of solids from energy curves using a quasi-harmonic Debye model[J]. ComputPhys Commun, 2004, 158(1) :57-72.

二级参考文献22

  • 1Lindl J D, McCrory R L, Campbell E M 1992 Phys. Today 45 32.
  • 2Nuckolls J H, Wood L, Thiessen A, Zimmerman G 1972 Nature 239 129.
  • 3John Lindl 1995 Phys. Plasmas 2 3933.
  • 4Chenais-Popovics C, Fajardo M, Gilleron F, Teubner U, Gauthier J C 2001 Phys. Rev. E 65 016413.
  • 5Chenais-Popovicsa C, Fajardo M, Thaisb, Gillerona F, Gauthiera J C, Eidmannc K, F? Isnerc W, Blenskib T, Perrotd F, Bauche-Arnoulte C, Bacheliere A, Bauchee J 2001 J. Quan.Spec & Radi Transfer 71 249.
  • 6Rajivk S, Noncryst J 1994 Solids 78 199.
  • 7Kahl S, Krebs H U 2001 Phys. Rev. B 63 172103.
  • 8Shen J, Zheng G, Kischner J 2004 Surf Sci. Reports 52 163.
  • 9Bailey J E, Rochau G A, Mancini R C, Iglesias C A, Macfarlane J J, Golovkin I E, Blancard C, Cosse Ph, Faussurier G 2009 Phys. Plasmas 16 058101.
  • 10Blanco M A, Francisco E, Luana V 2004 Computer. Phys. Communications 158 57.

共引文献2

同被引文献29

  • 1Ronchi C, Losilevski I L, Yakub E. Equation of state of uranium dioxide[M]. Berlin: Springer Verlag, 2004.
  • 2Grimvall G. Thermophysical properties of materials[M]. North Holland: Amsterdam,1999.
  • 3Sanati M, Albers R C, Lookman T, et al. Elastic constants, phonon density of states, and thermal properties of UO2 [J]. Phys Rev B, 2011, 84: 014116.
  • 4Fast L, Wills J M, Johansson B, et al. Elastic constants of hexagonal transition metals: Theory[J]. Phys Rev B, 1995, 51: 17431.
  • 5Sin'ko G V, Smirnow N A. Ab initio calculations of elastic constants and thermodynamic properties of bcc, fcc, and hcp A1 crystals under pressure[J]. J Phys : Condens Matter, 2002, 14: 6989.
  • 6Hershey A V. The elasticity of anisotropic aggregate of anisotropic cubic crystals[J]. J Appl Mech Trans ASME, 1954, 21: 236.
  • 7Kroner E. Bereehnung der elastischen konstanten des vielkristalls aus den konstanten des einkristalls[J]. Z Phys, 1958, 151: 504-518.
  • 8Nishida Y, Dodo T, Kuroda T, et al. Observation of radially propagating collisionless drift wave instability[J]. J Appl Phys, 1973, 44: 1451.
  • 9Ledbetter H M. Sound velocities and elastic-constant averaging for polyerystalline copper[J]. J Phys D: Appl Phys, 1980, 13: 1879-1884.
  • 10Ledbetter H M. Monocrystal-polycrystal elastic constants of a stainless steel[J]. Phys Status Solidi A, 1984, 85: 89-96.

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部