期刊文献+

自适应随机游走图像分割算法 被引量:5

An Adaptive Random Walk Algorithm for Image Segmentation
下载PDF
导出
摘要 传统的随机游走算法图像信息描述单一,目标轮廓易受背景干扰;针对这一问题,提出一种自适应随机游走图像分割算法.算法首先建立了一种基于纹理相似性的权函数表达式,借助Gabor能量滤波器,首次将纹理特征引入到随机游走算法中,来突出图像的结构信息;其次,为了更加准确地计算节点间的连接权值,算法还提出一种自适应权值计算方法,根据图像边缘密度,自适应地计算纹理和灰度特征在权函数中所占的权重.最后应用狄利克雷边界条件,实现图像分割.实验结果表明,所提算法更好地刻画了图像的结构信息;与传统方法相比,具有更好的适用性和分割准确性. To solve the problems that the description of image information is simple and the outline of the objective is easily influenced by background disturbances,an adaptive random walk(RW) image segmentation algorithm is proposed.A texture-based similarity weight expression is given,with the texture features introduced into RW algorithm for the first time to highlight the image structural information.In order to accurately calculate the weight between two adjacent nodes,an adaptive weight expression is proposed,i.e.,the proportion of intensity-based and texture-based weights in weight expression will be adaptively calculated according to the image edge density.High-quality segmentation results can be achieved by solving Dirichlet boundary condition.The experiments demonstrates that the proposed algorithm accurately describes image structural information and is more applicable and accurate in comparison with graph cut(GC) and typical RW algorithms.
出处 《东北大学学报(自然科学版)》 EI CAS CSCD 北大核心 2011年第8期1092-1096,共5页 Journal of Northeastern University(Natural Science)
基金 国家自然科学基金资助项目(81000639)
关键词 随机游走 图像分割 Gabor能量滤波器 边缘密度 狄利克雷边界条件 random walk image segmentation Gabor energy filter edge density Dirichlet boundary condition
  • 相关文献

参考文献9

  • 1Grady L, Funka-Lea O. Multi-label image segmentation for medical applications based on graph-theoretic electrical potentials[C]//Computer Vision and Mathematical Methods in Medical and Biomedical Image Analysis Workshop. Prague, 2004 : 230 - 245.
  • 2Grady L, Schiwietz T, Aharon S, et al. Random walks for interactive organ segmentation in two and three dimensions: implementation and validation [ C ] // 8th International Conference on Medical Image Computing and Computer- Assisted Intervention. Palm Springs, 2005: 773 - 780.
  • 3Grady L. Random walks for image segrnentation[J ]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2006,28(11) : 1768 - 1783.
  • 4片兆宇,高立群,郭丽.基于结构张量与随机游走的图像分割算法[J].东北大学学报(自然科学版),2009,30(8):1095-1098. 被引量:9
  • 5Guo L, Gao L Q, Pian Z Y, et al. Improved toboggan segmentation algorithm for magnetic resonance images[C]// The 2nd Conference on Industrial Electronics and Applications, Harbin, 2007:2504 - 2507.
  • 6De Valois R L, Albrecht D G, Thorell L G. Spatial frequency selectivity of cells in macaque visual cortex [ J ]. Vision Research, 1982,22(5) :545- 559.
  • 7Turner M R. Texture discrimination by Gabor functions[J]. Biological Cybernetics, 1986,55 : 71 - 82.
  • 8Kruizinga P, Petkov N. Nonlinear operator for oriented texture[J ]. IEEE Transactions on Image Processing, 1999, 8(10) :1395 - 1407.
  • 9Petkov N, Westenberg M A. Suppression of contour perception by band-limited noise and its relation to non- classical receptive field inhibition[J ]. Biological Cybernetics, 2003,88 (3) : 236 - 246.

二级参考文献9

  • 1Protiere A, Sapiro G. Interactive image segmentation via adaptive weighted distances[J]. IEEE Transactions on Image Processing, 2007,16(4) : 1046 - 1057.
  • 2Brodersen A, Museth K, Porumbescu S, et al. Geometric texturing using level sets [ J ]. IEEE Transactions on Visualization and Computer Graphics, 2008, 14 ( 2 ) : 277 - 288.
  • 3Kass M, Witkin A, Terzopoulos D. Snakes: active contour models [ J ]. International Journal of Computer Vision, 1988,1(4) :321 - 331.
  • 4Grady L. Multilabel random walker image segmentation using prior models [ C ]//IEEE Computer Society Conference on Computer Vision and Pattern Recognition. San Diego: IEEE, 2005 : 763 - 770.
  • 5Grady L. Random walks for image sagmentation[J ]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2006,28(11) :1768 - 1783.
  • 6Meila M, Shi J. Learning segmentation by random walks[C] // Advances in Neural Information Processing Systems. Cambridge, MA: MIT Press, 2000:873-879.
  • 7Kothe U. Edge and junction detection with an improved structure tensor [ C ]//Lecture Notes in Computer Science. Berlin: Springer-Verlag, 2003 : 25 - 32.
  • 8Brox T, Weickert J, Burgeth B. Nonlinear structure tensors [J]. Image and Vision Computing, 2006,24(1) :41 - 55.
  • 9片兆宇,高立群,郭丽,王坤.多阶段边缘检测算法[J].东北大学学报(自然科学版),2008,29(5):637-640. 被引量:1

共引文献8

同被引文献40

  • 1张晖,董育宁.基于视频的车辆检测算法综述[J].南京邮电大学学报(自然科学版),2007,27(3):88-94. 被引量:25
  • 2Bezder J C, Ehrlich R, Full W. FCM: the fuzzy c-means clustering algorithm [ J ]. Computer & Geosciences, 1984, 10 (2/3) :191 -203.
  • 3Ji Z X,Sun Q S,Xia D S. A framework with modified fast FCM for MR images segmentation[ J]. Pattern Recognition, 2011,44(5) :999 - 1013.
  • 4Kannan S R,Ramathilagam S, Devi R, et al. Robust kernel FCM in segmentation of breast medical images [ J ]. Expert Systems with Applications ,2011,38 ( 4 ) :4382 - 4389.
  • 5Wang Q, Zhang Q P, Zhou W. Study on remote sensing image segmentation based on ACA-FCM [ J ]. Physics Procedia ,2012,33:1286 - 1291.
  • 6Weickert B T, Burgeth B. Nonlinear structure tensors [ J ]. Image and Vision Computing,2006,24 (1) :41 -55.
  • 7Wu K L, Yang M S. Alternative c-means clustering algorithms[ J ]. Pattern Recognition, 2002,35 ( 10 ) : 2267 - 2278.
  • 8Zhang D Q, Chen S C. A comment on alternative c-means clustering algorithms[ J ]. Pattern Recognition ,2004,37 ( 2 ) : 173 - 174.
  • 9Khan A, Ullah J, Jaffar M A, et al.Color image segmentation: a novel spatial fuzzy genetic algorithm[J].Signal,Image and Video Processing, 2012 : 1-11.
  • 10Liu F.The new image segmentation algorithm using adaptive evolutionary programming and fuzzy c-means clustering[C]// SPIE,2011,8056.

引证文献5

二级引证文献11

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部