期刊文献+

基于MPI的不可压缩N-S方程并行计算方法 被引量:1

PARALLEL COMPUTING ALGORITHM OF INCOMPRESSIBLE N-S EQUATION BASED ON MPI
下载PDF
导出
摘要 在目前的流体计算中,当雷诺数较高时,计算量非常巨大,存在耗时长的问题,需要采用并行计算,对此提出一种基于MPI(Message Passing Interface)的并行计算方法。通过实例验证,该方法准确、易行、稳健,并且可以大幅提高计算速度,节省计算时间,对于大型科学计算问题具有很好的适用性。 For the present CFD,parallel computation is needed because of much calculation work and long time cost in condition of high Reynolds number.Thus a new parallel computing algorithm based on MPI is put forward.According to instances attested,this method is accurate,easy and stable,with higher computing speed and less computing time,which is well adaptable to large-scale scientific computing.
出处 《计算机应用与软件》 CSCD 2011年第8期279-280,283,共3页 Computer Applications and Software
关键词 N-S方程 计算流体力学 傅立叶展开 MPI 并行计算 N-S equation Computational fluid dynamics(CFD) Fourier series MPI Parallel computing
  • 相关文献

同被引文献14

  • 1李树民,朱国林,王开春.基于分区的隐式求解二维不可压NS方程的并行实现[J].空气动力学学报,2002,20(z1):39-44. 被引量:7
  • 2郭晓虎,田振夫,张林波.求解不可压Navier-Stokes方程的一种新方法[J].计算物理,2004,21(6):484-494. 被引量:1
  • 3李宁,罗纪生.基于MPI的不可压缩N-S方程并行计算方法的研究[J].计算机工程与应用,2007,43(9):8-10. 被引量:6
  • 4KARNIADAKIS G E, ISRAELI M, ORSZAG S A. A high-order splitting method for the incompressible Navier-Stokes equations [J]. Journal of Computational Physics, 1991,97(2) : 414-443.
  • 5GUPTA M M, KALITA J C. A new paradigm for solving Navier-Stokes equations: Stream function- velocity formulation [J]. Journal of Computational Physics, 2005,207(1) :52-68.
  • 6PANDIT S K, KALITA J C, DAHAL D C. A fourth-order accurate compact scheme for the solution ofsteady Navier-Stokes equations on non-uniform grids [J]. Computers Fluids, 2008,37(2): 121-134.
  • 7ZHANG J, JACKSON T L. A high-order incompressible flow solver with WENO [J]. Journal of Computational Physics, 2009,228(7) : 2426-2442.
  • 8TIAN Z F, LIANG X, YU P :g. A high order compact finite difference algorithm for solving the incompressible Navier-Stok~s equations [J]. International Journal for Numerical Methods in Engineering, 2011,88(6): 511-532.
  • 9JIANG G, SHU C W. Efficient implementation of weighted ENO schemes [J]. Journal of Computational Physics, 1996,126(1) : 202-228.
  • 10TIAN Z F, GE Y B. A fourth-order compact finite difference scheme for the steady stream function- vorticity formulation of the Navier-Stokes/Boussinesq quations[J]. International Journal for Numerical Methods in Fluids, 2003,41(5) : 495-518.

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部