期刊文献+

基于势点的未知动态环境下多移动机器人协作围捕 被引量:3

Cooperative hunting under unknown environment for multiple mobile robots based on potential point
下载PDF
导出
摘要 提出一种在未知动态环境下实现多移动机器人自适应协作围捕运动目标的整体方案。为成功实现围捕,设计了基于势点的夹击策略,势点由效率最优原则获得。同时为躲避围捕过程中遇到的动态随机障碍,提出了基于碰撞风险的随机避障策略。围捕机器人的综合行为通过融合避障行为、合围行为和抓捕行为获得。在Microsoft Robotic Studio(MRS)仿真环境下进行了模拟实验,获得的不同条件下的围捕结果证明了围捕策略的有效性和鲁棒性。 A general scheme of cooperative hunting for a moving target by multiple mobile robots in unknown dynamic environments is presented.To realize successful hunting,potential point based strategy is proposed and potential points were obtained by optimal efficiency principle.Simultaneously,collision risk based obstacle avoidance scheme is used to avoid random obstacles during hunting.The synthesized behavior is obtained by fusing avoidance behavior,formation behavior and approach behavior.Simulated hunting experiments were conducted under different conditions in Microsoft Robotics Studio and simulation results demonstrate the effectiveness and robustness of the proposed scheme.
出处 《中国科技论文在线》 CAS 2011年第7期524-530,共7页
基金 国家自然科学基金资助项目(60705031) 中央高校基本科研业务费专项基金资助项目(N090404007) 机器人技术与系统国家重点实验室开放课题基金(重点)资助项目(SKLRS-2010-ZD-03)
关键词 多移动机器人 协作围捕 随机避障 势点 模糊规则 包容结构 multiple mobile robots cooperative hunting random obstacle avoidance potential point fuzzy rules subsumption architecture
  • 相关文献

参考文献7

二级参考文献29

  • 1刘成良,张凯,付庄,曹其新,殷跃红.神经网络在机器人路径规划中的应用研究[J].机器人,2001,23(S1):605-608. 被引量:11
  • 2尚游 徐玉如.水下机器人分层运动规划技术[J].中南工业大学学报,1998,29:105-108.
  • 3[1]Salichs M A, Moreno L. Navigation of mobile robots :open questions [J]. Robotica, 2000, 18: 227-234.
  • 4[3]Lim M H, Rahadja S. AGA paradigm for learning fuzzy rules[J]. Fuzzy Sets Syst, 1996,82:177- 186.
  • 5[4]Hoffimann F. Soft computing techniques for the design of mobile robot behaviors [J]. Information Science, 2000,122: 241 - 258.
  • 6[5]Lee S I, Cho S B. Emergent behaviors of a fuzzy sensory-motor controller evolved by genetic algorithm [J]. IEEE Tran Syst Man, Cybern B, 2001,31(6):919-929.
  • 7[6]SengT L, Khalid M B, Yusof R. Tuning of a neuro-fuzzy controller by genetic algorithm [J]. IEEE Tran Syst Man, Cybern B,1999,29:226-236.
  • 8[7]Goldberg D E. Messy genetic algorithms: motivations, analysis and first result[J]. Complex System,1989,3:493-530.
  • 9[1]Sugihara K,Suzuki I.Distributed algorithms for formation of geometric patterns with many mobile robots [J].Journal of Robotic Systems,1996,13(3):127-139.
  • 10[2]Yun X P,Alptekin G,Albayrak O.Line and circle formation of distributed physical mobile robots [J],Journal of Robotic Systems,1997,14(2):63-76.

共引文献45

同被引文献23

引证文献3

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部