期刊文献+

基于近红外光谱的未知类别样品聚类方法 被引量:5

Clustering method of unknown sort samples based on near infrared spectroscopy
下载PDF
导出
摘要 在近红外光谱分析中,针对大量样品参与建模时,需将样品集进行分类,以减少样品光谱变异范围,提高近红外模型的预测准确度。本文以来自中国各地的222份小麦样品为例,在未知样品组分含量和类别归属的前提下,结合样品的近红外光谱信息,采用基于试探的未知类别的样品聚类方法(最邻近规则法和最大最小距离算法)对样品集分类。其中,最邻近规则法在阈值T为1.9时,最大最小距离算法在阈值为样品间的最大距离的1/2时,分类建模指标均优于未分类所建模型。从分类实现过程和结果可以看出:基于试探的未知类别的样品聚类方法中无需多次训练,且对未知类别的样品集无需事先确定分类数目,但需要确定分类阈值,阈值不同,则分类结果会随之改变。研究为近红外建模过程中未知类别样品的分类提供了一种参考方法。 In the case of a large numbers of samples participating in the modeling, classification modeling on the sample set could reduce the range of variation of the sample, and improve the prediction capability of the model. In this paper, 222 wheat samples across China were used as modeling sample. Combined with near-infrared spectral information of samples, the sample set was classified by probing-based unknown classes samples clustering methods (nearest neighbor approximation and maximum-minimum distance algorithm),under the condition that the component content of samples and type of ownership were unknown. When the threshold of the nearest neighbor approximation algorithm was 1.9, and the threshold of the maximum-minimum distance algorithm was half of the maximum distance, the classification model indicators were better than unclassified model. The classification process and results indicated that many times of training was not a necessity with the probing-based method of sample clustering with unknown categories, but the classification threshold need to be determined, the classification changing accordingly with different threshold values. This study provided a reference method for unknown category sample classification during the near-infrared modeling process.
出处 《农业工程学报》 EI CAS CSCD 北大核心 2011年第8期345-349,共5页 Transactions of the Chinese Society of Agricultural Engineering
基金 十一五科技支撑计划(2006BAD11A12-02)
关键词 近红外光谱 聚类分析 分类 near infrared spectroscopy cluster analysis classification
  • 相关文献

参考文献13

  • 1张晓曼,戴连奎.结合分类与局部PLS的近红外光谱定量分析[J].光谱学与光谱分析,2008,28(12):2847-2850. 被引量:6
  • 2Long W F, Bums D H. A hierarchical local weighted calibration and classification approach to depth-resolved quantification in scattering media using photon time-of-fiight measurements[J]. Chemometrics and Intelligent Laboratory Systems, 2001, 57(1): 15-23.
  • 3Borosy A P, Keser K, Matyus P. Application of nonlinear and local modeling methods for 3D QSAR study of class I antiarrhythmics[J]. Chemometrics and Intelligent Laboratory Systems, 2000, 54(2): 107- 122.
  • 4Leung H, Huang Yingsong, Cao Changxiu. Locally weighted regression for desulphurisation intelligent decision system modeling[J]. Simulation Modeling Practice and Theory, 2004, 12(6): 413-423.
  • 5侯振雨,王伟,蔡文生,邵学广.基于独立成分的局部建模方法及其在近红外光谱分析中的应用研究[J].计算机与应用化学,2006,23(3):224-226. 被引量:17
  • 6王艳斌.人工神经网络在近红外分析方法中的应用和深色油品的分析[D].北京:中国科技信息研究所,2002.
  • 7Kennard R W, Stone L A. Computer Aided Design of Experiments[J]. Technometrics, 1969, 11(1): 137-148.
  • 8Tan S. An effective refinement strategy for KNN text classifier[J]. Expert Systems with Applications, 2006, 30(2): 290-298.
  • 9Blanco M, Pages J. Classification and quantitation of finishing oils by near infrared spectroscopy[J]. Analytica Chimica Acta, 2002, 463(2): 295-303.
  • 10张录达,苏时光,王来生,李军会,杨丽明.支持向量机(SVM)在傅里叶变换近红外光谱分析中的应用研究[J].光谱学与光谱分析,2005,25(1):33-35. 被引量:47

二级参考文献24

共引文献128

同被引文献92

引证文献5

二级引证文献55

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部