期刊文献+

神经干细胞移植联合康复训练对脊髓损伤大鼠Nogo—A及NgR蛋白表达的影响 被引量:3

Effects of rehabilitation training combined with bone marrow mesenchymai stem cell-derived neural stem cells transplantation on the expression of Nogo-A and NgR proteins after spinal cord injury
原文传递
导出
摘要 目的观察神经干细胞移植联合康复训练对脊髓损伤大鼠Nogo-A及NgR蛋白表达的影响。方法共选取80只SD大鼠,采用改良Allen法制成大鼠T10节段脊髓损伤模型,将其随机分为联合治疗组、细胞移植组、康复训练组及模型组。联合治疗组及康复训练组于制模后次日给予滚筒训练与跑台训练,每周训练5d;联合治疗组与细胞移植组于造模后第7天时,将体外培养的骨髓源性神经干细胞移植人大鼠受损脊髓中。每周采用BBB评分法对各组大鼠后肢运动功能进行评定;于干细胞移植后第1,3,7天时每组各取5只大鼠处死,采用Western—blot法检测各组大鼠术后不同时间点脊髓中Nogo.A及NgR蛋白表达。结果从脊髓损伤后第2周开始,发现联合治疗组大鼠BBB评分在各时间点均明显优于其他各组(P〈0.05),第5周时康复训练组BBB评分明显优于模型组(P〈0.05)。随着时间推移,各组大鼠Nogo—A及NgR蛋白起始均呈现高表达、随后快速下降等特点,以干细胞移植第7天时联合治疗组的降低幅度最显著,细胞移植组次之,康复训练组与模型组间差异无统计学意义(P〉0.05)。结论康复训练联合神经干细胞移植治疗脊髓损伤大鼠具有协同效应,能进一步抑制受损脊髓中Nogo—A、NgR蛋白表达,促进脊髓损伤大鼠肢体功能恢复。 Objective To study the effects of rehabilitation training combined with the transplantation of bone marrow mesenchymal stem cells-derived neural stem cells (BMSC-D-NSCs) on the expression of Nogo-A and NgR protein in rats after spinal cord injury (SCI). Methods The spinal cords of eighty Sprague-Dawley rats were injured using a modified Alleng impactor (H = 25 mm) at T10. The injured rats were randomly divided into a combi- nation therapy group which was given rehabilitation training and cell transplants, a cell graft group, a rehabilitation training group and a control group. At the 7th day post SCI, BMSC-D-NSCs were transplanted into the injured spinal cords of the rats in the combination therapy and cell graft groups. Hindlimb movement was assessed using the Basso- Beattie-Bresnahan (BBB) scale every week, and protein was extracted from the injured spinal cord tissue for Nogo-A and NgR determination by Western blotting at the 1st, 3rd and 7th day after cell transplantation. Results The av- erage BBB score of the rats in the combination therapy group was significantly higher than that of the other groups from 2 weeks post transplantation. The scores in the rehabilitation training group were significantly higher than in the control group from the 5th week post transplantation. Western blotting showed high expression of Nogo-A and NgR protein 24 h post surgery, but these declined with time. For Nogo-A there was a significant difference among the groups at all three time points. In the combination therapy group the expression declined to a minimum by the 7th day. For NgR protein there was no significant difference between the 1st and 3rd day in any group. Conclusions Rehabilitation training combined with BMSC-D-NSC transplantation can have a synergistic effect on functional recovery from SCI. It can down regulate the expression of Nogo-A and NgR protein.
出处 《中华物理医学与康复杂志》 CAS CSCD 北大核心 2011年第8期566-570,共5页 Chinese Journal of Physical Medicine and Rehabilitation
基金 广东省自然科学基金资助项目(8451051501000460)
关键词 脊髓损伤 康复训练 骨髓源性神经干细胞 NOGO-A NGR Spinal cord injury Rehabilitation Bone marrow mesenchymal stem cells Neural stemcells Nogo-A protein NgR protein
  • 相关文献

参考文献20

  • 1Li M, Liu J, Song J. Nogo goes in the pure water: solution structure of Nogo-60 and design of the structured and buffer-soluble Nogo-54 for enhancing CNS regeneration. Protein Sci ,2006,15 : 1835-1841.
  • 2Chen MS, Huber AB, van der Haar ME, et al. Nogo-A is a myelin-asso- ciated neurite outgrowth inhibitor and an antigen for monoclonal anti- body IN-1. Nature ,2000,403:434-439.
  • 3Rossignol S, Schwab M, Schwartz M, et al. Spinal cord injury:time to move?. J Neurosci,2007,27 : 11782-11792.
  • 4Schwab ME. Functions of Nogo proteins and their receptors in the ner- vous system. Nat Rev Neurosci,2010,11:799-811.
  • 5Maier IC, Ichiyama RM, Courtine G, et al. Differential effects of anti- Nogo-A antibody treatment and treadmill training in rats with incom- plete spinal cord injury. Brain,2009,132 : 1426-1440.
  • 6Fawcett JW,Curt A. Damage control in the nervous system:rehabilita- tion in a plastic environment. Nat Med,2009 ,15 :735-736.
  • 7Abematsu M, Tsujimura K, Yamano M, et al. Neurons derived from transplanted neural stem ceils restore disrupted neuronal circuitry in a mouse model of spinal cord injury. J Clin Invest, 2010, 120: 3255- 3266.
  • 8Girgis J, Merrett D, Kirkland S, et al. Reaching training in rats with spi- nal cord injury promotes plasticity and task specific recovery. Brain, 2007,130:2993-3003.
  • 9Fawcett JW. Recovery from spinal cord injury: regeneration,plasticity and rehabilitation. Brain, 2009,132 : 1417-1418.
  • 10Scheff SW, Rabchevsky AG, Fugaccia I, et al. Experimental modeling of spinal cord injury: characterization of a force-defined injury device. J Neurotrauma,2003,20 : 179-193.

二级参考文献24

  • 1包映晖,罗其中,江基尧,梁玉敏,殷玉华,潘耀华.不同发育阶段大鼠CNS的Nogo mRNA的表达[J].中华神经医学杂志,2005,4(5):442-444. 被引量:4
  • 2段淑荣,杨昆鹏,孙林琳,鞠炜仙,段晓宁,王德生,张黎明.康复训练对脑梗死大鼠血管内皮生长因子的表达及血管生成的影响[J].中华物理医学与康复杂志,2007,29(2):80-84. 被引量:14
  • 3Schwab ME, Mir A, Rouitter E, et at. Intrathecatty infused antibodies against Nogo-A penetrate the CNS and downregutate the endogenous neurite growth inhibitor Nogo-A. Mot Cell Neurosci,2006,32: 161-173.
  • 4Lee JK, Kim JE, Sivuta M, et at. Nogo Receptor antagonism pronrotes stroke recovery by enhancing axonal plasticity. J Neurosci, 2004, 24 : 6209-6217.
  • 5Hennerici MG, Bazner H, Kreisel SH. Pathophysiotogy of stroke rehabilitation: temporal aspects of neuro-functionat recovery. Cerebrovase Dis, 2006, 21:6-17.
  • 6Schweigreiter R, Watmstey AR, Niederrost B, et at. Versican V2 and the central inhibitory domain of Nogo-A inhibit neurite growth via p75NTR/NgR-independent pathways that converge at RhoA. Mot Cell Neurosci, 2004, 27 : 163-174.
  • 7Domeniconi M, Filbin MT. Overcoming inhibitors in myelin to promote axonat regeneration. J Neurot Sci, 2005, 233:43-47
  • 8Heatton EB, Nichols D, Conroy B, et at. Opening the black box of post-stroke rehabilitation: stroke rehabilitation patients, processes, and outcomes. Arch Phys Med Rehabit, 2005, 86:1-7.
  • 9Hennerici MG, Bazner H, Kreiset SH. Pathophysiotogy of stroke rehabilitation: temporal aspects of neuro-functionat recovery. Cerebrovasc Dis, 2006, 21:6-17.
  • 10Jurewicz A, Matysiak M, Raine CS. et at. Soluble Nogo-A, an inhibitor of axonat regeneration, as a biomarker for nluhipte sclerosis. Neurology, 2007, 68:283-287.

共引文献4

同被引文献39

  • 1Reginato S,Gianni-Barrera R,Banfi A.Taming of the wild vessel:promoting vessel stabilization for safe therapeutic angiogenesis[J].Biochem Soc Trans,2011,39(6):1654-1658.
  • 2Hicklin DJ,Ellis LM.Role of the vascular endothelial growth factor pathway in tumor growth and angiogenesis[J].J Clin Oncol,2005,23(5):1011-1027.
  • 3Zhang P,Li J,Liu Y,et al.Transplanted human embryonic neural stem cells survive,migrate,differentiate and increase endogenous nestin expression in adult rat cortical peri-infarction zone[J].Neuropathology,2009,29(4):410-421.
  • 4Ii M,Nishimura H,Sekiguchi H,et al.Concurrent vasculogenesis and neurogenesis from adult neural stem cells[J].Circ Res,2009,23,105(9):860-868.
  • 5Falconer JC,Narayana PA,Bhattacharjee M,et al.Characterization of an experimental spinal cord injury model using waveform and morphometric analysis[J].Spine,1996,21(1):104-112.
  • 6Ronaghi M,Erceg S,Moreno-Manzano V,et al.Challenges of stem cell therapy for spinal cord injury:human embryonic stem cells,endogenous neural stem cells,or induced pluripotent stem cells[J].Stem Cells,2010,28(1):93-99.
  • 7Wang Z,Tsai LK,Munasinghe J,et al.Chronic valproate treatment enhances postischemic angiogenesis and promotes functional recovery in a rat model of ischemic stroke[J].Stroke,2012,43 (9):2430-2436.
  • 8Carbajo-Lozoya J,Lutz S,Feng Y,et al.Angiotensin Ⅱ modulates VEGF-driven angiogenesis by opposing effects of type 1 and type 2 receptor stimulation in the microvascular endothelium[J].Cell Signal,2012,24(6):1261-1269.
  • 9Roy H,Bhardwaj S,Yla-Herttuala S.Biology of vascular endothelial growth factors[J].FEBS Lett,2006,580 (12):2879-2887.
  • 10Carmeliet P,Ruiz de Almodovar C.VEGF ligands and receptors:implications in neurodevelopment and neurodegeneration[J].Cell Mol Life Sci,2013,70(10):1763-1778.

引证文献3

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部