期刊文献+

基于A-F类循环塑性理论的多轴局部应力应变法 被引量:3

MULTIAXIAL LOCAL STRESS-STRAIN APPROACH BASED ON A-F TYPE CYCLIC PLASTICITY THEORY
下载PDF
导出
摘要 提出预测缺口构件疲劳寿命的多轴局部应力应变法。采用Armstrong-Frederick(A-F)类循环塑性理论,描述具有非Masing特性的16MnR材料的循环塑性行为。结合A-F类循环塑性模型和增量式Neuber法,分析比例和非比例加载下缺口根部处的多轴应力应变状态。将局部应力应变应用于基于临界面的多轴疲劳损伤模型,对缺口构件进行疲劳损伤分析和疲劳寿命预测。分析结果表明,基于A-F类循环塑性理论的多轴局部应力应变法,能很好地描述缺口根部处的多轴应力应变状态,疲劳寿命的预测结果与试验数据基本吻合。 A multiaxial local stress-strain method was proposed to predict the fatigue life of notched components.The Armstrong-Frederick(A-F) type cyclic plasticity theory was adopted to describe the cyclic plasticity behavior.This newly developed cyclic plasticity theory is able to characterize the non-Masing behavior of 16MnR steel.The multiaxial stress-strain state at the notch root of notched components subjected to proportional and non-proportional loading was predicted by combining the A-F cyclic plasticity model and the incremental Neuber's rule.On the basis of the multiaxial local stress-strain state and a critical plane based multiaxial fatigue damage criterion,the fatigue damage of the notched components was analyzed and then the fatigue life was predicted.The numerical results show that the proposed multiaxial local stress-strain method can describe the multiaxial stress state at the notch root very well,and the predicted fatigue lives correlate well with the experimental data.
出处 《机械强度》 CAS CSCD 北大核心 2011年第4期590-596,共7页 Journal of Mechanical Strength
基金 国家自然科学基金海外青年学者合作研究基金(50428504) 中国高技术研究发展计划(863项目 2007AA04Z430)资助~~
关键词 多轴局部应力应变法 非Masing材料 Armstrong-Frederick(A-F)类循环塑性模型 疲劳寿命 Multiaxial local stress-strain method Non-Masing material Armstrong-Frederick(A-F) type cyclic plasticity model Fatigue life
  • 相关文献

参考文献19

  • 1尚德广,王大康,李明,姚卫星.随机疲劳寿命预测的局部应力应变场强法[J].机械工程学报,2002,38(1):67-70. 被引量:43
  • 2Ohno N, Wang J-D. Kinematic hardening rules with critical state of dynamic recovery[ Jl. International Journal of Plasticity, 1993, 9(3) : 375- 403.
  • 3Kang G, Ohno N, Nebu A. Constitutive modeling of strain range dependent cyclic hardening[J]. International Journal of Plasticity, 2003, 19 (10) : 1801-1819.
  • 4Chen X, Jiao R. Modified kinematic hardening rule for multiaxial ratcheting prediction[J]. International Journal of Plasticity, 2004, 20(4-5) : 871-898.
  • 5Jiang Y, Kurath P. Characteristics of the Armstrong-Frederick type plasticity models[J]. International Journal of Plasticity, 1996, 12(3): 387- 415.
  • 6Zhang J, Jiang Y. Constitutive modeling of cyclic plasticity deformation of a pure polycrystalline copper [ J ]. International Journal of Plasticity, 2008, 24(10) : 1890-1915.
  • 7Hoffmann M, Seeger T. A generalized method for estimating muhiaxial elastic-plastic notch stresses and strains[J]. ASME Journal of Engineering Materials and Technology, 1985, 107(44) : 250-260.
  • 8Moftakhar A, Buczynski A, Glinka G. Calculation of elasto-plastic strains and stresses in notches under multiaxial loading[J]. International Journal of Fracture, 1995, 70(4) : 357-373.
  • 9Singh M N K, Glinka G, Dubey R N. Elastic-plastic stress-strain calculation in notched bodies subjected to non-proportional loading[J]. International Journal of Fracture, 1996, 76(1) : 39-60.
  • 10Ye D, Hertel O, Vormwald M. A unified expression of elastic-plastic notch stress-strain calculation in bodies subjected to muhiaxial cyclic loading[ J]. Interuational Journal of Solids and Structures, 2008, 45 (24) : 6177-6189.

二级参考文献102

共引文献106

同被引文献25

  • 1姚卫星.金属材料疲劳行为的应力场强法描述[J].固体力学学报,1997,18(1):38-48. 被引量:35
  • 2HOFFMANN M, SEEGER T. A generalized method for estimating multiaxial elastio-plastic notch stresses and strains [J]. ASME Journal of Engineering Materials and Technology, 1985, 107(44): 250-260.
  • 3MOFTAKHAR A, BUCZYNSKI A, GLINKA G. Calculation of elastic-plastic strains and stresses in notches under multiaxial loading [J]. International Journal of Fracture, 1995, 70(4) : 357 - 373.
  • 4SINGH MNK, GLINKA G, DUBEY R N. Elastic-plastic stress-strain calculation in notched bodies subjected to non-proportional loading [J]. International Journal of Fracture, 1996, 76(1) :39 - 60.
  • 5SOCIE D F, MARQUIS G B. Multiaxial Fatigue [M]. Warrendale, PA: SAE International, 2000.
  • 6CHU C CIncremental multiaxial Neuber correction for fatigue analysis [J]. SAE Journal of Materials & Manufacturing, 1995, 104 : 595 - 602.
  • 7BARKEY M E, SOCIE D F, HSIA K J. A yield surface approach to the estimation of notch strains for proportional and nonproportional cyclic loading [J]. ASME Journal of Engineering Materials and Technology, 1994, 116(2) : 173 - 180.
  • 8KOTTGEN V B, BARKEY M E, SOCIE D F. Pseudo stress and pseudo strain based approaches to multiaxial notch analysis [J]. Fatigue & Fracture of Engineering Materials & Structures, 1995, 18(9): 981 - 1006.
  • 9HERTEL O, DORING R, HOFFMEYER J. Notch stress and strain approximation procedures for application with multiaxial nonpropor- tional loading [J]. Materialprufung, 2005, 47(5): 268-277.
  • 10BUCZYNSKI A, GLINKA G. An analysis of elasto-plastic strains and stresses in notched bodies subjected to cyclic non-proportional load- ing paths [C]//Biaxial/multiaxial fatigue and fracture. Amsterdam: Elsevier, 2003, 265 -284.

引证文献3

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部