期刊文献+

拟椭圆槽孔层合板的孔边应力分布 被引量:1

STRESS DISTRIBUTION AROUND QUASI-ELLIPTIC NOTCH IN LAMINATED COMPOSITES
下载PDF
导出
摘要 基于一种修正的余能原理,建立两类特殊杂交应力层合元,一种具有一个无外力圆柱表面元及一种具有一个无外力直表面元。单元分层假设应力场准确满足平衡方程、层间应力连续条件及下表面无外力边界条件。单元位移场允许每层横截面独立地转动,但保持层间界面上位移的连续性。应用这两类单元高效而精确地分析具有拟椭圆槽孔[+45/-45]s层合板的孔口附近应力分布。计算表明,在较粗的网格下它可以给出较一般位移元及一般杂交元更为精确的孔边应力解。 Two kinds of 3-dimensional assumed stress hybrid multilayer elements based on a modified complementary energy principle have been developed for efficient and accurate stress analysis around quasi-elliptic notch in laminated composites.One kind of element contains a traction-free cylindrical surface,the other contains a traction-free planar surface.The stresses of both elements are satisfied exactly the homogeneous equilibrium equation and the interlayer traction continuity condition.The displacements of each layer are assumed independent rotations of the normals to the plate mid surface for both elements.Transverse-shear deformation effects are incorporated in each layer with displacement continuity enforced along interlayer surface.The 3-dimensional stress distribution of [+45/45]s orthotropic laminated plates with quasi-elliptic notch is efficiently analyzed by the use of combination of these two kinds of special hybrid stress elements.The example shows that this method is more efficient and accurate than by conventional displacement elements in coarse mesh.
出处 《机械强度》 CAS CSCD 北大核心 2011年第4期618-623,共6页 Journal of Mechanical Strength
基金 中国科学院知识创新工程(二期)基金资助~~
关键词 层合材料 特殊杂交应力元 三维应力分析 有限元法 槽孔 Laminated composites Special hybrid stress element 3-D stress analysis Finite element method Notch
  • 相关文献

参考文献9

  • 1Whiteomb D J D, Raju I S. Superposition method for analysis of free-edge stresses [Jl - J. Comp. Mat., 1983, 17: 492-507.
  • 2Raju I S, Crews J H. Three-dimensional analysis of [0/90], and [9010], laminates with central circular hole [J]. Comp. Tech. Rev., 1981, 4 (4): 116-124.
  • 3Spliker R L, Chou S C. Edge effects in symmetric composites: importance of satisfying the traction-free edge condition [J]. J. Comp. Mat., 1980, 14: 2-20.
  • 4Yeh J R, Tadibakhsh I G. Stress singularity in composite laminates by finite element method [J]. J. Comp. Mat., 1986, 20: 347-364.
  • 5Wang S S, Yuan F G. A singular hybrid finite element analysis of boundary-layer stresses in composite laminates [ J]. Int. J. Solids Struct., 1983, 19: 825-827.
  • 6Nishioka T, Atluri S N. Stress analysis of holes in angle-ply laminates: an efficient assumed stress special hole element approach and simple estimation method[J]. Comput. & Struct. , 1982, 15: 135-147.
  • 7Bar-Yoserph P, Israeli M. Asymptotic finite element method for boundary value problem[J]. Int. J. Num. Meth. Engng., 1986, 6: 21-24.
  • 8杨庆平,田宗漱.变宽度板在拉伸和弯曲作用下的三维应力集中[J].应用力学学报,2004,21(3):79-84. 被引量:1
  • 9Pian T H H, Mau S T. Some recent studies in assumed stress hybrid models [C]//Oden J T. Advances in Computational Methods in Structural Mechanics and Design. Alabama: University of Alabama Press, 1972: 87-106.

二级参考文献11

  • 1[1]Timoshenko S and Dietz W., Stress concentration produced by holes and fillets[J], Trans ASME, 27: 199~237,1925
  • 2[2]Weibel E E. , Studies in photoelastic stress determination[J], Trans ASME, 57:637~658, 1934
  • 3[3]Wahl A M and Beeuwkes Jr. R. , Stress concentration produced by holes and notches[J], Trans ASME, 56: 617~625, 1934
  • 4[4]Frocht M M. , Photoelastic studies in stress concentration[J], Mechanical Engineering Journal of the ASME, 58: 485~489,1936
  • 5[5]Heywood R B. , Designing by photoelasticity[M], London: Chapman and Hall Ltd, 1952
  • 6[6]Peterson R E. , Stress concentration design factors[M], New York: Wiley, 1959
  • 7[7]Fessler H, Rogers C C and Stanley P. , Shouldered plates and shafts in tension and torsion[J], Journal of Strain Analysis, 4(3): 169~179, 1969
  • 8[8]Wilson I H and White D J. , Stress-concentration factors for shoulder fillets and grooves in plates[J], Journal of Strain Analysis, 5(l): 43~51, 1973
  • 9[10]Peterson R E. ,应力集中(中译本)[M],北京:国防工业出版社,1988
  • 10[11]Noda N A, Yamasaki T, Matsuo K et al. , Interaction between fillet and crack in round and flat test specimens[J], Engineering Fracture Mechanics, 50(3): 385~405, 1995

同被引文献4

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部