期刊文献+

一类倒向随机微分方程解的比较定理 被引量:1

A Comparison Theorem for Solutions to Backward Stochastic Differential Equations with Non-Lipschitz Coefficients
下载PDF
导出
摘要 讨论了一类非Lipschitz条件的BSDE,使用It公式和Gronwall不等式,证明了一类由d-维Brown趋动的倒向随机微分方程适应解的比较定理. A class of BSDEs with non-Lipschitz condition is discussed. Using the Ito formula and the Gronwall inequality, a comparison theorem for the adapted solutions to the class of BSDEs driven by d-dimensional Brownian motion with non-Lipschitz conditions is proved.
作者 颜宝平
出处 《湖南师范大学自然科学学报》 CAS 北大核心 2011年第4期26-28,共3页 Journal of Natural Science of Hunan Normal University
基金 贵州省教育厅自然科学基金资助项目(2008099)
关键词 倒向随机微分方程 比较定理 ITO公式 GRONWALL不等式 backward stochastic differential equation comparison theorem Ito formula Gronwall inequality
  • 相关文献

参考文献5

二级参考文献4

共引文献23

同被引文献11

  • 1METZLER R, KLAFTER J. The random walk's guide to anomalous diffusion: a fractional dynamics approach [ J ]. Phys Rep, 2000, 339 ( 1 ) : 1-77.
  • 2MACHADO J T, KIRYAKOVA V, MAINARDI F. Recent history of fractional calculus [ J ]. Commun Nonlinear Sci Numer Simulat. 2011. 16(3) :1140-1153.
  • 3PODLUBNY I. Fractional differential equations [ M ]. San Diego : Academic Press, 1999.
  • 4LIU J Y, XU M Y. Some exact solutions to Stefan problems with fracional differential equations[J]. J Math Anal Appl, 2009, 351 (2) ,536-542.
  • 5LIANG J R, REN F Y, QIU W Y, et al. Exact solutions for nonlinear fractional anomalous diffusion equations[J]. Physica A, 2007, 385(1) :80-94.
  • 6CHEN C M, LIU F, TURNER I, etal. A Fourier method for the fractional diffusion equation describing sub-diffusion [ J ]. J Comput Phys, 2007, 227 (2) : 886-897.
  • 7ZHUANG P, LIU F, AHN V, et al. New solution and analytical techniques of the implicit numerical method for the anomalous subdiffusion equation[J]. Siam J Numer Anal, 2008, 46(2) :1079-1095.
  • 8CUI M R. Compact finite difference method for the fractional diffusion equation [ J ]. J Comput Phys, 2009,228 (20) :7792- 7804.
  • 9CHEN C M, LIU F, AHN V, et al. Numerical schemes with high spatial accuracy for a variable-order anomalous subdiffusion equation [ J ]. SIAM J Sci Comput, 2010,32 (4) : 1740-1760.
  • 10CHEN C M, LIU F, BURRAGE K. Finite difference methods and a Fourier analysis for the fractional reactionsubdiffusion equation[J]. Appl Math Comput, 2008, 198(2) :754-769.

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部