期刊文献+

纳米SiO_2对低碳钢表面磷化膜的结构和耐蚀性的影响 被引量:6

Influence of Nano SiO_2 on Structure and Corrosion Resistance of Phosphate Coating on Surface of Mild Steel
原文传递
导出
摘要 使用加入纳米SiO_2的低温磷化液在低碳钢表面制备了磷化膜,并对其形貌、成分、厚度、粗糙度以及耐蚀性进行表征,研究了纳米SiO_2对磷化膜结构和性能的影响。结果表明,纳米SiO_2不是磷化膜的主要成分,但是在磷化液中添加纳米SiO_2使磷化膜增厚、细化磷化膜晶粒、提高磷化膜致密度,并提高了磷化膜的耐腐蚀性能。当纳米SiO_2的加入量为2g/L时,磷化膜在5%NaCl溶液中的耐腐蚀性最好,府蚀电流密度为0.231μA/cm^2。 Under the low temperature conditions,phosphate coating on the surface of mild steel by the addition of nano-SiO_2 in phosphating solution was prepared in this paper.The influence of nano-SiO_2 on structure and performance of phosphate coating was investigated by SEM,XRD,EDS,thickness, surface roughness and corrosion electrochemical testing.The results show that although nano-SiO_2is not main component of phosphate coating,but the coating thickness decreases with increasing the concentration of nano-SiO_2,nano-SiO_2 can reduce the crystal size of coating and increase the density and corrosion resistance of coating.When the nano-SiO_2 concentration is 2 g/L,the best corrosion resistance of phosphate coating is obtained in 3.5%NaCI solution.The corrosion current of phosphating sample was 0.231μA/cm^2 in 5%NaCI solution.
出处 《材料研究学报》 EI CAS CSCD 北大核心 2011年第4期362-368,共7页 Chinese Journal of Materials Research
基金 国家自然科学基金50571059和50615024 教育部新世纪优秀人才支持计划NCET-07-0536 教育部创新团队计划RT0739资助项目~~
关键词 材料失效与保护 磷化 低碳钢 纳米SIO2 耐腐蚀性 materials failure and protection phosphorization mild steel nano-SiO2 corrosion resistance
  • 相关文献

参考文献19

  • 1D.Weng, P.Jokiel, A.Uebleis, H.Boehni, Corrosion and protection characteristics of zinc and manganese phosphate coatings, Surface and Coatings Technology, 88, 147-156(1996).
  • 2E.P.Banczek, P.R.P.Rodrigues, I.Costa, Investigation on the effect of benzotriazole on the phosphating of carbon steel, Surface and Coatings Technology, 201, 3701-3708(2006).
  • 3V.Burokas, A.Martuˇsiene, O.Gircene, Influence of fluoride ions on the amorphous phosphating of aluminium alloys, Surface and Coatings Technology., 202, 239-245(2007).
  • 4S.M.Tamborim Takeuchi, D.S.Azambuja, A.M.Saliba-Silva, I.Costa, of NdFeB magnets by phosphating with tungstate incorporation, Surface and Coatings Technology, 200, 6826-6831(2006).
  • 5A.S.Akhtar, K.C.Wong, K.A.R.Mitchell, The effect of pH and role of Ni2+ in zinc phosphating of 2024-Al alloy Part I: Macroscopic studies with XPS and SEM, Applied Surface Science., 253, 493–501(2006).
  • 6于宝兴,董首山.FDT磷化液的研制[J].腐蚀科学与防护技术,1998,10(6):342-346. 被引量:6
  • 7G.Bikulcus, V.Burokas, A.Martuˇsiene, E.Matulionis, Effects of magnetic fields on the phosphating process, Surface and Coatings Technology, 172, 139–143(2003).
  • 8P. Bala Srinivasan, S. Sathiyanarayanan, C. Marikkannu, K. Balakrishnan, Acceleration of ambient temperature phosphating by an electrochemical pulse technique, Surface and Coatings Technol., 64, 161–165(1994).
  • 9P.K.Sinha, R.Feser, Phosphate coating on steel surfaces by an electrochemical method, Surface and Coatings Technology, 161, 158–168(2002).
  • 10S.Jegannathan, T.S.N.Sankara Narayanan, K.Ravichandran, S.Rajeswari, Formation of zinc–zinc phosphate composite coatings by cathodic electrochemical treatment, Surface and Coatings Technology, 200, 4117–4126(2006).

二级参考文献31

共引文献21

同被引文献60

引证文献6

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部