期刊文献+

基于多主题追踪的网络新闻推荐 被引量:3

Web news recommendation based on multiple topic tracking
下载PDF
导出
摘要 针对网络新闻推荐系统推荐准确率偏低的问题,提出一种基于多主题追踪的网络新闻推荐算法。基于多主题追踪的推荐算法采用多个用户模型表示用户对不同主题的兴趣,并动态更新用户模型以动态反映用户的兴趣变化。实现了网络新闻推荐系统的核心推荐算法,并在标准路透社新闻数据集(RCV1)上验证了算法的有效性,有效提升了新闻推荐的准确率。 A Web news recommendation method based on multiple topic tracking was proposed to improve the precision of recommendation. The proposed algorithm used multiple user profiles to represent user's interests in different topics, and dynamically updated user's profile to reflect the changing of user's interests. The central recommendation algorithm was implemented, and experiments on Reuters Corpus Volume 1 were carried out. The experimental results show that the proposed algorithms can effectively improve the precision of recommendation.
作者 陈宏 陈伟
出处 《计算机应用》 CSCD 北大核心 2011年第9期2426-2428,共3页 journal of Computer Applications
基金 浙江省教育厅科研项目(Y200908583)
关键词 新闻推荐 多主题 用户模型 news recommendation multiple topic user profile
  • 相关文献

参考文献7

  • 1ADOMAVICIUS G, TUZHILIN A. Toward the next generation of recommender systems: A survey of the state-of-the-art and possible extensions[ J]. IEEE Transactions on Knowledge and Data Engineering, 2005, 17(6) : 734 - 749.
  • 2BILLUS D, PAZZANI M. Adaptive news access[ C]//The Adaptive Web, LNCS4321. Berlin: Springer-Verlag, 2007: 550-570.
  • 3AHN J, BRUSILOVSKY P, GRADY J, et al. Open user protiles for adaptive news systems: help or harm? [ C]// Proceedings of the 16th International Conference on World Wide Web. New York: ACM, 2007:11 - 20.
  • 4KON P, CARDENAS A, BUTTLER D, et al. Tracking multiple topics for finding interesting articles[ C]// Proceedings of the 13th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York: ACM, 2007:560-569.
  • 5ARDISSONO L, CONSOLE L, TORRE I. An adaptive system for the personalized access to news [ J]. AI Communications, 2001,14(3): 129 - 147.
  • 6BAEZA-YATES R, RIBEIRO-NETO B. Modem information retrieval [ M]. New York: Morgan Kanfmann, 2005.
  • 7VOORHEES E. Overview of TREC 2002[ C]// TREC 2002: Proceedings of the 11 th Text Retrieval Conference. Washington: NIST Special Publication, 2002:1 - 15.

同被引文献33

  • 1马光志,倪国元.一种增量式模糊聚类算法[J].微计算机应用,2005,26(1):5-7. 被引量:8
  • 2唐歆瑜,乐文忠,李志成,李军义.基于知网语义相似度计算的特征降维方法研究[J].科学技术与工程,2006,6(21):3442-3446. 被引量:16
  • 3汪小帆、李翔、陈关荣.2005.复杂网络理论及其应用,北京:清华大学出版社.
  • 4[23]刘群,李素建.基于《知网》的词汇语义相似度计算[Z].台北:第三届汉语词汇语义学研讨会,2002.
  • 5周雅夫,马力,董洛兵.基于SWN理论提取复合关键字系统的设计与实现[J].西安邮电学院学报,2007,12(5):82-86. 被引量:4
  • 6Watts DJ,Strogatz SH.Collective dynamics of‘small-world’networks.Nature,1998,393(4): 440-442.
  • 7Newman MEJ,Girvan M.Finding and evaluating community structure in networks.Phys.Rev.E,2004,69: 026113.
  • 8Matsuo Y,Sakaki T.Graph-based Word clustering using a Web Search Engine.2006.
  • 9LeCun Y, Bengio Y, Hinton G. Deep Learning [J ]. Nature ,2015,521 ( 7553 ) :436-444.
  • 10Mikolov T, Yih W, Zweig G. Linguistic Regularities in Continuous Space Word Representations [ C ]//Pro- ceedings of NAACL-HLT' 13. Atlanta,USA: [ s. n.] ,2013 : 746-751.

引证文献3

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部