期刊文献+

基于粒子滤波和Galerkin法的改进目标跟踪算法 被引量:1

Improved object tracking algorithm based on particle filter and Galerkin's method
下载PDF
导出
摘要 在粒子滤波框架下,估计的准确性受到建议分布选取的影响很大。传统的粒子滤波通常采用系统转移概率作为建议分布,但传统的建议分布选取方法由于没有考虑新的观测信息,因此不能产生准确的估计值。为此采用一种叫做Galerkin法的数学工具去构造建议分布,依据该方法构造的建议分布相对传统的方法提高了粒子滤波估计的准确性。同时,在新的跟踪算法框架中,将颜色模型和形状模型进行自适应的融合,并提出了一种新的模型更新方法,提高了目标跟踪的稳定性。实验结果证明了该跟踪算法的有效性。 In the particle filter framework, estimation accuracy strongly depends on the choice of proposal distribution. The traditional particle filter uses system transition probability as the proposal distribution without considering the new observing information; therefore, they cannot give accurate estimation. A new tracking framework applied with particle filter algorithm was proposed, which used Galerkin's method to construct proposal distribution. This proposal distribution enhanced the estimation accuracy compared to traditional filters. In the proposed framework, color model and shape model were adaptively fused, and a new model update scheme was also proposed to improve the stability of the object tracking. The experimental results demonstrate the availability of the DrODosed algorithm.
出处 《计算机应用》 CSCD 北大核心 2011年第9期2489-2492,共4页 journal of Computer Applications
基金 国家自然科学基金资助项目(60802084)
关键词 目标跟踪 粒子滤波 自适应融合 GALERKIN法 颜色模型 object tracking particle filter adaptive fusion Galerkin's method color model
  • 相关文献

参考文献16

  • 1ARULAMPALAM M, MASKELL S, GORDON N, et al. A tutorial on particle filters for online nonlinear/non-Gaussian Bayesian tracking[J]. IEEE Transactions on Signal Processing, 2002, 50(2): 174 - 188.
  • 2DOUCET A, ANDRIEU G S, ANDRIEU C. On sequential Monte Carlo sampling methods for Bayesian filtering[ J]. Statistics and Computing, 2000, 10(3) : 197 -208.
  • 3GORDON N J, SALMOND D J, EWING C. Bayesian state estimation for tracking and guidance using the bootstrap filter [ J]. Journal of Guidance, Control and Dynamics, 1995, 18(6) : 1434 - 1443.
  • 4ZHAI Y, YEARY M, ZHOU D. Target tracking using a particle filter based on the projection method[C]//ICASSP 2007: IEEE International Conference on Acoustics, Speech and Signal Processing. Piscataway, NJ: IEEE, 2007, 3:1189-1192.
  • 5高世伟,郭雷,杨宁,陈亮,杜亚勤.一种新的粒子滤波目标跟踪算法[J].上海交通大学学报,2009,43(3):485-489. 被引量:12
  • 6GUNTHER J, BEARD R, WILSON J, et al. Fast nonlinear filtering via Galerkin's method[ C]// Proceedings of 1997 American Control Conference. Piscataway, NJ: IEEE, 1997, 5:2815-2919.
  • 7BEARD R, KENNEY J, GUNTHER J, et al. Nonlinear projection filter based on Galerkin approximation [ J]. Journal of Guidance, Control and Dynamics, 1999, 22(2) : 258 - 266.
  • 8COMANICIU D, RAMESH V, MEER P. Real-time tracking of nonrigid objects using mean shift[ C]//CVPR '00: IEEE Conference on Computer Vision and Pattern Recognition. Piscataway, NJ: IEEE, 2000, 2:142 - 149.
  • 9BIRCHFIELD S. Elliptical head tracking using intensity gradients and color histograms[ C]// Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Piscataway, NJ: IEEE, 1998, 232-237.
  • 10AHERNE F J, THACKER N A, ROCKETY P. The Bhattacharyya metric as an absolute similarity measure for frequency coded data [ J]. Kybemetika, 1998, 34(4) : 363 -368.

二级参考文献15

  • 1Arulampalam M, Maskell S, Gordon N, et al. A tutorial on particle filters for online nonlinear/non-Gaussian Bayesian tracking [J]. IEEE Transactions on Signal Process, 2002, 50(2) :174-188.
  • 2Doucet A, Godsill S, Andrieu C. On sequential Monte Carlo sampling methods for Bayesian filtering [J]. Statist Computer, 2000, 10: 197-208.
  • 3Gordon N J, Salmond D J, Ewing C. Bayesian state estimation for tracking and guidance using the bootstrap filter [J]. Journal of Guidance, Control and Dynamics, 1995,18(6): 1434-1443.
  • 4Zhai Y, Yeary M. A novel nonlinear state estimation technique based on sequential importance sampling and parallel filter banks [C]//Proeeedings of the 2005 IEEE International Conference on Control Applications. Piscataway NJ: IEEE Press, 2005: 1601- 1611.
  • 5Lainiotis D, Papaparaskeva P. A new class of efficient adaptive nonlinear filters (ANLF) [J]. IEEE Transactions on Signal Processing, 1998, 46 (6) : 1730- 1737.
  • 6Lainiotis D, Papaparaskeva P. Efficient algorithms of clustering adaptive nonlinear filters [J]. IEEE Transactions on Automatic Control, 1999, 44 (7): 1454- 1459.
  • 7Comaniciu D, Ramesh V, Meer P. Real-time tracking of non-rigid objects using mean shift [C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Washington DC: IEEE Computer Society, 2000, 2 : 142-149.
  • 8Birchfield S. Elliptical head tracking using mtensity gradients and color histograms [C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Washington DC: IEEE Computer Society, 1998: 232-237.
  • 9AherneF, Thacker N, Rockett P. The Bhattacharyya metric as an absolute similarity measure for frequency coded data [J]. Kybernetika, 1998, 34(4) : 363-368.
  • 10Wu Y, Huang T S. Robust visual tracking by integrating multiple cues based on co-inference learning [J]. International Journal of Computer Vision, 2004, 58(1) :55-71.

共引文献11

同被引文献16

  • 1SORENSON H W. Kalman filtering: theory and application[ M]. Piscataway: IEEE Press, 1985.
  • 2LI J, FANG H, CHEN W, et al. High-precision maneuvering target contour tracking method based on Kalman filtering algorithm[ C[// Proceedings of the 2013 25th Chinese Control and Decision Confer- ence. Piscataway: IEEE Press, 2013:2041-2045.
  • 3ARULAMPALAM M S, MASKELL S, GORDON N, et al. A tutori- al on particle filters for online tracking[ J]. IEEE Transactions (2): 174-188.
  • 4BREITENSTEIN M D, REICHLIN F, LEIBE B, et al. Robust tracking-by-detection using a detector confidence particle filter [ C]//Proceedings of the 2009 12th IEEE International Conference on Computer Vision. Piscataway: IEEE Press, 2009: 1515- 1522.
  • 5ZHONG X, PREMKUMAR A B, MADHUKUMAR A S. Particle filtering and posterior Cramrr-Rao bound for 2-D direction of arrival tracking using art acoustic vector sensor[ J]. IEEE Sensors Journal, 2012, 12(2) : 363 -377.
  • 6ZURIARRAIN I, MEKONNEN A A, LERASLE F, et al. Tracking- by-detection of multiple persons by a resample-move particle filter [ J]. Machine Vision and Applications, 2013, 24 (8) : 1751 - 1765.
  • 7XU Y, WINTER J, LEE W C. Prediction-based strategies for ener- gy saving in object tracking sensor networks[ C]//Proceedings of the 2004 IEEE International Conference on Mobile Data Management. Piscataway: IEEE Press, 2004:346-357.
  • 8OLULE E, WANG G, GUO M, et al. RARE: an energy-efficient target tracking protocol for wireless sensor networks[ C]// ICPPW 2007: Proceedings of the 2007 International Conference on Parallel Processing Workshops. Piscataway: IEEE Press, 2007:76-76.
  • 9CHEN H. A hybrid cluster-based target tracking protocol for wire- less sensor networks[ EB/OL]. [2013-12-10]. http://downloads. hindawi, eorrr/joumals/ijdsn/2013/494863, pdf.
  • 10MANOLAKIS D E. Efficient solution and performance analysis of 3-D position estimation by trilateration[ J]. IEEE Transactions on Aerospace and Electronic Systems, 1996, 32(4) : 1239 - 1248.

引证文献1

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部