期刊文献+

共轭梯度求解器的FPGA设计与实现

Design and implementation of conjugate gradient iterative solver on FPGA
下载PDF
导出
摘要 针对共轭梯度(CG)迭代算法软件执行效率低、实时性差的缺点,提出一种基于现场可编程逻辑门阵列(FPGA)平台的CG迭代求解器。设计采用软硬件结合的方式构建整个系统,CG协处理器执行CG迭代算法中计算量大、控制简单的代码,以达到硬件加速的目的。控制复杂、计算量较少的代码则依旧在微处理上执行。设计采用行交错数据流,使得整个系统完全无停顿的运行,提高了计算性能。实验结果表明,与软件执行相比,硬件CG协处理器可以获得最高5.7倍的性能加速。 To overcome the disadvantage of inefficient and bad real-time capability in software version Conjugate Gradient (CG) iterative solver, a CG iterative solver was designed and implemented on Field Programmable Gate Array (FPGA) platform. The design of CG iterative solver was based on hardware/software co-design. Hardware CG co-processor implemented the code of enormous computation and simple control, which could accelerate the system. The code of control complexity and less calculation was still performed in the microprocessor. The use of row-interleaved data flow could make the system not to stall to improve performance. The experimental results illustrate that hardware CG iterative solver can speed up about 5.7 times over the software version of the same algorithm.
出处 《计算机应用》 CSCD 北大核心 2011年第9期2571-2573,2588,共4页 journal of Computer Applications
基金 科技人员服务企业行动项目(2009GJA20014)
关键词 可重构计算 稀疏线性方程组 现场可编程逻辑门阵列 共轭梯度法 行交错数据流 reconfigurable computing sparse linear equations Field Programmable Gate Array (FPGA) conjugate gradient algorithm row-interleaved data flow
  • 相关文献

参考文献9

  • 1MORRIS G R, PRASANNA V K, ANDERSON R D. A hybrid approach for mapping conjugate gradient onto an FPGA augmented reconiigurable supercomputer [ C]// FCCM'06: Proceedings of the 14th IEEE Symposium Field-programmable Custom Computing Machines. Washington, DC: IEEE Computer Society, 2006: 3- 12.
  • 2KASBAH S J, DAMAJ I W. The jacobi method in reconfigurable hardware [ C]//WCE 2007: Proceedings of the World Congress on Engineering. [S.I.]: Newswood Limited, 2007, 2:823-827.
  • 3LOPES A R, CONSTANTINIDES G A. A high throughput FPGA- based floating point conjugate gradient implementation [C]// ARC '08: Proceedings of the 4th International Workshop on Reconfigurable Computing: Architectures, Tools and Applications, LNCS 4943. Berlin: Springer-Verlag, 2008:75-86.
  • 4BAKOS J D, NAGAR K K. Exploiting matrix symmetry to improve FPGA-accelerated conjugate gradient [ C]//FCCM 2009: 17th Annum IEEE International Symposium on Field Programmable Custom Computing Machines. Washington, DC: IEEE Computer Society, 2009:223-226.
  • 5SUN J, PETERSON G. Sparse matrlx-vector multiplication design on FPGAs [ C]// FCCM 2007: 15th Annual IEEE International Symposium on Field Programmable Custom Computing Machines. Washington, DC: IEEE Computer Society, 2007:349-352.
  • 6ZHUO L, PRASANNA V K. Scalable hybrid designs for linear algebra on reconfigurable computing systems [ J]. IEEE Transactions on Computers, 2008, 57(12) : 1661 - 1675.
  • 7ROLDAO A, CONSTANTINIDES G. A high throughput FPGA- based floating point conjugate gradient implementation for dense matrices [ J]. ACM Transactions on Reconfigurable Technology and Systems, 2010, 3(1) : 1 - 19.
  • 8WANG Y, BOYD S. Fast model predictive control using online optimization [ J]. IEEE Transactions on Control Systems Technology, 2010, 18(2) : 267 -278.
  • 9CONSTANTINIDES G A. Tutorial paper: parallel architectures for model predictive control [ C]// ECC'09: Proceedings of European Control Conference. Washington, DC: IEEE Control System Society, 2009:138 - 143.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部