期刊文献+

基于网络特征的用户图书借阅行为分析——以北京大学图书馆为例 被引量:17

Network Based Users' Book-Loan Behavior Analysis:A Case Study of Peking University Library
下载PDF
导出
摘要 图书借阅是图书馆提供的重要服务之一。研究用户的图书借阅行为模式,有助于图书馆提供面向用户的个性化服务,从而提升服务质最。以北京大学图书馆为例,几乎所有的学生都有图书借阅记录。这种图书借阅行为形成了一个用户到图书的"图书借阅网络"。另一方面,相同的图书可以被不同的用户所借阅,图书作为知识的载体,通过这种共同借阅关系将不同背景的用户联系在一起,形成了一种用户到用户的知识分享社会网络,称作"共同借阅网络"。基于这两种网络,本文对用户的借阅行为模式进行了深入的分析,发现了影响用户借阅行为的因素,并从用户借阅行为中挖掘出了新的知识,构造了个性化图书借阅推荐系统。本文的研究成果有利于推进图书馆服务向Library 2.0时代迈进。 Book-loan is the most important service in libraries.Taking Peking University as an example,almost every student has borrowed books from the library.Hence,it is essential to understand users' book-loan behaviors,and provide better user-oriented services based on the understandings.There exist two kinds of networks in libraries:book-borrowing network and co-borrowing network.In the book-borrowing network,a user and a book are connected if the user borrowed the book.Meanwhile,in the co-borrowing network,two users are connected if they borrowed same books.The latter can also be regarded as a knowledge sharing network.In the paper,we analyze users' book-loan behaviors in these two networks,gain new understandings from users' behaviors,and apply the analysis results to promote library services.Our research exactly goes as the trend of Library 2.0.
出处 《情报学报》 CSSCI 北大核心 2011年第8期875-882,共8页 Journal of the China Society for Scientific and Technical Information
基金 教育部科技发展中心“网络时代的科技论文快速共享专项研究资助课题”(博士点基金编号20100001110203) 核高基项目(2011ZX01042-001-001)资助
关键词 用户行为分析 社会网络分析 数字图书馆 日志挖掘 user behavior analysis social network analysis digital library log mining
  • 相关文献

参考文献15

  • 1Newman M. The structure of scientific collaboration netw- orks [ J ]. Proceedings of the National Academy of Sciences (PNAS) ,2001,98 (2) :409-415.
  • 2Barabasi A, Albert R. Emergence of scaling in random networks [ J ]. Science, 1999,286 ( 5439 ) : 509-512.
  • 3Milgram S. The small world problem [ J ]. Psychology To- day, 1967,2 ( 60 ) :66-67.
  • 4Albert R,Jeong H, Barabasi A. The diameter of the world wide web[ J]. Nature, 1999 ,d01 : 130-131.
  • 5Broder A, Kumar R, Maghoul F, et al. Graph structure in the Web: experiments and models [ C ]//Bulterman D. Proceedings of the Ninth Conference on World Wide Web. Amsterdam: North-Holland Publishing Co, 2000: 309 -320.
  • 6Clauset A, Shalizi C, Newman M. Power-law distributions in empirical data [ J ]. SIAM Review, 2009, 51 (4) : 661-703.
  • 7Wikipedia. Chinese library classification [ OL ]. http:// en. wikipedia. org/wiki/Chincse.
  • 8Mislove A, Marcon M, Gummadi K, et al. Measurement and analysis of online social networks [ C ]//Dovrolis C. Proceedings of the 7th ACM SIGCOMM Conference on Internet Measurement. New York :ACM ,2007:29-42.
  • 9Watts D, Strogatz S. Collective dynamics of small-world networks [ J ]. Nature, 1998,393 ( 6684 ) :440-442.
  • 10Adamic E,Adar E. How to search a social network [ J ]. Social Networks,2005,27 ( 3 ) : 187 - 203.

同被引文献161

引证文献17

二级引证文献101

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部