期刊文献+

GK模糊分类算法在GIS局部放电模式识别中的应用 被引量:14

Application of Gustafson-Kessel fuzzy classification algorithm in the pattern recognition of partial discharge for GIS
下载PDF
导出
摘要 为了分析不同绝缘缺陷所激发的局部放电类型,在GIS内模拟了四种典型缺陷模型,根据局放信号与相位之间的关系,提取脉冲序列、幅值和相位信息,得到Hqmax~Phi、Hqmean~Phi及Hn~Phi等二维相位分布,然后利用统计参数偏斜度Sk、陡峭度Ku、峰值数量Pe及互相关因数CC等获取二维分布正负半周期的特征指纹。介绍一种新型Gustafson-Kessel(GK)模糊分类方法,根据特征指纹对四种缺陷进行分类,最后根据聚类有效性分析,验证了GK分类算法与模糊C-均值(FCM)分类方法都可达到较好的分类效果。 In order to analyze the partial discharge (PD) pattern of different defects in gas insulated switchgear (GIS), four common defeots:in GIS which.are the floating electrode, protrusion, particle and void are proposed. According to the relation between PD and phase, the pulse sequence, amplitude and phase are extracted, and three two-dimensional phase distributions of Hqmax-Phi, the Hqmean-phi and Hn-phi are acquired. And based on above, the statistical parameters of skewness (Sk), kurtosis (Ku), number of amplitude (Pc) and cross coefficient ( CC ) are used to achieve the characteristic fingerprints of the positive and negative half phase distributions. At last, a new Gustafson-Kessel (GK) fuzzy classification method is introduced to classify the four kinds ofdefects according to the finger'prims, and the cluster validity analysis proves that both the GK and fuzzy classification method (FCM) can achieve good elassifieation results.
出处 《电力系统保护与控制》 EI CSCD 北大核心 2011年第17期50-54,共5页 Power System Protection and Control
关键词 局部放电 GIS 模糊分类 GK分类算法 FCM分类算法 partial discharge GIS fuzzy clustering Gustafson-Kessel classification method FCM.
  • 相关文献

参考文献14

二级参考文献68

共引文献310

同被引文献176

引证文献14

二级引证文献200

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部