期刊文献+

分片线性逼近的动态特性分析

Dynamic behavior of piecewise-linear approximations
原文传递
导出
摘要 为了合理地应用分片线性逼近方法解决非线性动态系统问题,对非线性动态特性在分片线性逼近下的一致性问题展开研究。在对典型的混沌映射Logistic映射进行分片线性逼近时,分片线性系统会表现出一些不同于原系统的动态特性。即使在静态逼近精度很高的情况下,逼近所得的分片线性系统的分岔图与原系统的分岔图也会有很大的差异。分析表明分片线性系统与原系统光滑性的差异是导致动态特性差异的原因。继而使用光滑化的分片线性模型作逼近,逼近结果的动态特性能够保持与原系统一致。光滑化的分片线性模型适用于逼近非线性动态系统。 The use of piecewise-linear approximations to model nonlinear dynamic systems depends on the dynamic behavior of the piecewise-linear approximations.When the piecewise-linear approximation technique is used here to model the Logistic map,differences in the dynamic behavior are found between the approximation model and the original system.Even when the static error is very small,there are obvious differences between the bifurcation diagram of the original system and that of the piecewise-linear approximation.The piecewise-linear approximation is not as smooth as the original system,which causes the differences.A smoothed piecewise-linear model gives the same dynamic behavior as the original system,so smoothed piecewise-linear models are suitable for approximating nonlinear dynamic systems.
出处 《清华大学学报(自然科学版)》 EI CAS CSCD 北大核心 2011年第7期879-883,共5页 Journal of Tsinghua University(Science and Technology)
基金 国家自然科学基金项目(61074118 60974008) 高等学校博士学科点科研基金(200800030029)
关键词 非线性动力学 分片线性逼近 LOGISTIC映射 光滑链接超平面 nonlinear dynamics piecewise-linear approximation Logistic map smoothed hinging hyperplane
  • 相关文献

参考文献10

  • 1Storace M, De Feo O. Piecewise-linear approximation of nonlinear dynamical systems [J]. IEEE Transactions on Circuits and Systems I: Regular Papers, 2004, 51(4) : 830- 842.
  • 2Storace M, Linaro D, Lange E. The Hindmarsh-Rose neuron model: Bifurcation analysis and piecewise-linear approximations [J].Chaos, 2008, 18(3), 033128(1-10).
  • 3Poggi T, Sciutto A, Storace M. Piecewise linear implementation of nonlinear dynamical systems: From theory to practice [J]. Electronics Letters, 2009, 45(19) : 966 - 967.
  • 4Aguirre L, Letellier C. Modeling nonlinear dynamics and chaos: A review [J]. Mathematical Problems in Engineering, 2009(1), 238960(1 - 35).
  • 5Breiman L. Hinging hyperplanes for regression, classification, and function approximation[J].IEEE Transaction on Information Theory, 1993, 39(3) : 999 - 1013.
  • 6Bresten C, Jung J. A study on the numerical convergence of the discrete logistic map[J]. Communications in Nonlinear Science and Numerical Simulation, 2009, 14(7): 3076- 3088.
  • 7Rani M, Agarwal R. A new experimental approach to study the stability of logistic map [J]. Chaos, Solitons & Fractals, 2009, 41(4) : 2062-2066.
  • 8Peitgen H, Jurgens H, Saupe D. Chaos and Fraetals: New Frontiers of Science [M]. New York, USA: Springer-Verlag, 1992.
  • 9Feigenbaum M. Quantitative universality for a class of nonlinear transformations [J]. Journal of Statistical Physics, 1978, 19(1): 25-52.
  • 10Feigenbaum M. Universal metric properties of non-linear transformations [J]. Journal of Statistical Physics, 1979, 21(6): 669-706.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部