期刊文献+

单壁磁性纳米管的自旋波谱 被引量:1

Spin Waves in Ferromagnetic Single-walled Nanotubes
下载PDF
导出
摘要 利用量子统计理论的多体格林函数方法计算了单壁磁性纳米管的自旋波的色散关系.Armchair型纳米管的自旋波谱只有一支,这一支有int(m/2+1)条色散曲线.当q1a+q2a=2π时,自旋波能量是简并的.当纳米管的管径m(亦即圆周方向上的格点数)一定时,自旋波能量曲线随温度的升高而降低.Zigzag型磁纳米管的自旋波谱分为两支:ω1支和ω2支.每一支都有m条色散曲线.当q1b+q2b=π时,自旋波能量是简并的.自旋波能量简并在物理上是由对称性所致. The spin wave spectra of ferromagnetic single-walled nanotubes are calculated by use of the many-body Green's function method of quantum statistical theory.For a nanotube of armchair type with a diameter m,there is the only one category of energy spectra,which contains int[m/2+1] branches of energy spectra.As q1a+q2a=2π,the spin wave energy is degenerate.When the diameter m of a nanotube is fixed,a higher temperature leads to lower energy spectra.For a nanotube of zigzag type with a diameter m,energy spectra are classified into two categories,ω1and ω2.Each of them has m branches of energy spectra.As q1b+q2b=π,the spin wave spectra of the tubes are degenerate,which is caused by the symmetry physically.
作者 米斌周
出处 《首都师范大学学报(自然科学版)》 2011年第4期24-28,共5页 Journal of Capital Normal University:Natural Science Edition
关键词 磁性纳米管 量子自旋模型 格林函数方法 自旋波 Ferromagnetic nanotube quantized spin models many-body Green's function method spin wave
  • 相关文献

参考文献1

二级参考文献16

  • 1[1]S.S.P. Parkin, N. More, and K.P. Roche, Phys. Rev.Lett. 64 (1990) 2304; S.S.P. Parkin, R. Bhadra, and K.P.Roche, Phys. Rev. Lett. 66 (1990) 2152; D.H. Mosca, et al., J. Magn. Magn. Mater. 94 (1991) L1.
  • 2[2]J. Unguris, R.J. Celotta, and D.T. Piece, Phys. Rev. Lett.67 (1991) 140; J. Unguris, R.J. Celotta, and D.T. Piece,Phys. Rev. Lett. 79 (1997) 2734.
  • 3[3]S.T. Purcell, W. Folkerts, M.T. Johnson, N.W.E. McGee,K. Jager, J. aan de Stegge, W.B. Zeper, W. Hoving, and P. Grunberg, Phys. Rev. Lett. 67 (1991) 903.
  • 4[4]M.T. Johnson, S.T. Purcell, N.W.E. McGee, R. Co ehoorn, J. aan de Stegge, and W. Hoving, Phys. Rev.Lett. 68 (1992) 2688.
  • 5[5]D.M. Edwards, J. Mathon, R.B. Muniz, and M.S. Phan,Phys. Rev. Lett. 67 (1991) 493.
  • 6[6]P. Bruno and C. Chappert, Phys. Rev. Lett. 67 (1991)1602.
  • 7[7]U. Bovensiepen, F. Wilhelm, P. Srivastava, O. Poulopou los, M. Farle, A. Ney, and K. Baberschke, Phys. Rev.Lett. 81 (1998)2368.
  • 8[8]A. Ney, F. Wilhelm, M. Farle, P. Poulopoulos, P. Srivas tava, and K. Baberschke, Phys. Rev. B59 (1999) R3938.
  • 9[9]S.V. Tyablikov, Methods in the Quantum Theory of Mag netism, Plenum, New York (1967).
  • 10[10]N.N. Bogolyubov and S.V. Tyablikov, Soy. Phys. Dokl. 4(1959) 589.

共引文献1

同被引文献4

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部